Применение магнитов в разных сферах деятельности современного общества. Где используются магниты

С тех пор, как вначале 80-х был изобретен неодимовый магнит, применение его распространилось практически на все сферы промышленности - от швейной и пищевой до станкостроительной и космической. Сегодня практически нет отрасли, где бы ни использовались подобные устройства. Более того, в большинстве случаев они практически вытеснили традиционные ферримагниты, существенно уступающие по своим характеристикам.

В чем причина популярности изделий из неодима?

В нескольких словах скажем о том, что такое неодимовый магнит и где применяется

Магнитные свойства неодима были открыты сравнительно недавно, а первая продукция из него появилась лишь в 1982 году. Несмотря на это, она тут же стала набирать популярность. Причина в потрясающих характеристиках сплава, способного притягивать железные предметы в сотни раз больше собственного веса и в десятки раз сильнее, чем ферромагнитные устройства. Благодаря этому, техника, где применяются неодимовые магниты, стала меньше по размерам, но при этом гораздо эффективнее.

В составе сплава, помимо неодима, содержится железо и бор. Чтобы получить нужное изделие, эти вещества в виде порошка не расплавляют, а спекают, что приводит к одному существенному недостатку - хрупкости. Избавиться от сколов и коррозии помогает слой медно-никелевого сплава, благодаря которому, получается продукт готовый для полноценного использования.

Неодимовые магниты - применение в быту

Сегодня каждый может купить бруски, диски или кольца из неодима и использовать их в домашнем хозяйстве. В зависимости от задач, можно выбрать нужный размер, вес и форму изделия, сообразуясь со своим кошельком. Ниже мы приводим несколько вариантов использования магнитных устройств, хотя, в действительности сфера из употребления практически безгранична и ограничивается только фантазией владельца.

Итак, где применяется неодимовый магнит в быту?

Поиск и сбор металлических предметов

Теперь у Вас не возникнет проблем с поиском железных вещей, закатившихся под мебель или упавших в колодец. Просто закрепите, например, магнитный диск на конце палки или привяжите его на шнур и проведите таким нехитрым приспособлением по месту, куда вероятно упал предмет. Буквально через несколько минут потерянное окажется в Ваших руках целым и невредимым.

Применение неодимового магнита поможет также собрать металлическую стружку или рассыпавшиеся саморезы. Для удобства оберните предмет из неодима в ткань, носок или полиэтиленовый пакет. Это поможет с одной стороны защитить рабочую поверхность от налипания железного мусора, а с другой - снять разом все, что прилипло и не отделять каждый шуруп отдельно.


Держатели

Рассказывая о сферах, где применяются неодимовые магниты в быту, упомянем о разного рода фиксаторах. С их помощью Вы можете подвешивать на вертикальных поверхностях любые железосодержащие предметы: кухонные или слесарные принадлежности, садовый и любой другой инструмент. Просто закрепите пластинки из неодима на стенде в определенном порядке и при необходимости прикрепляйте к ним, например ножи или отвертки.

Применение неодимового магнита в быту возможно и для подвешивания не железных предметов: картин, зеркал, полочек, антимоскитных сеток и т.д. Для этого зафиксируйте на вещи магнитную пластину, а на поверхность, куда планируете её крепить небольшой лист железа.

Как мы уже говорили, сплав из неодима достаточно хрупкий, поэтому нежелательно нарушать его целостность сверлением или разрезанием, из-за чего свойства металла существенно пострадают. В качестве подвесов лучше выбирать неодимовые магниты, применение которых не требует дополнительной обработки. Благо интернет-магазины предлагают изделия самых разных конфигураций с отверстиями нужного диаметра, с различными креплениями и вырезами. Поэтому Вы без труда выберите устройство нужной конфигурации. С таким же успехом можно использовать магнитные элементы в качестве защелки на двери, для прикрепления бейджа или создания своими руками магнитика на холодильник. Это далеко не полный список сфер, где применяют неодимовый магнит.

Зажимы

Если требуется склеить две поверхности, а из-за сложности формы использовать тиски не получится, проблему опять помогут решить магнитные детали. Просто разместите между ними склеиваемые предметы, которые за счет притягивающей силы неодима будут плотно прижаты друг к другу.

Используя такого рода зажимы, Вы легко сможете почистить или помыть поверхности, казавшиеся абсолютно недоступными. Где применяют неодимовые магниты конкретно? Для мытья внешних поверхностей стекол балкона, чистки аквариума и других труднодоступных стеклянных емкостей. Поместите магнитный брусок внутрь мочалки, которую зафиксируйте с внешней стороны балкона, удерживая её другим магнитом изнутри. Таким образом, вы можете направлять внешнюю мочалку, куда пожелаете и идеально очистить стекло.

Авто

От стружки и другого металлического мусора в машинном масле можно избавиться с помощью применения неодимового магнита, видео об этом есть в сети. Закрепите магнитное устройство на сливной пробке картера, неодим притянет микрочастицы железа, и они не попадут в рабочие механизмы авто.

С помощью небольшой пластинки из неодима, можно также закрепить какие-либо предметы на кузове авто, а с помощью больших магнитных дисков или брусков можно даже выравнивать небольшие вмятины.

Неодимовый магнит - применение в быту. Неисследованные моменты

Многие ученые считают, что электромагнитные волны оказывают благотворное воздействие на живые организмы. В связи с этим появилось множество устройств, которые, как считается, способствуют росту растений и оздоравливают организм. Многие огородники втыкают магнитные прутки рядом с посаженными растениями, а животноводы помещают предметы в клетках с домашними животными. Кроме того, сейчас популярны различные магнитные браслеты, отделка неодимом одежды, очистка воды и многое другое.

Безусловно, в статье мы затронули лишь малую толику сфер, где неодимовые магниты нашли применение, видео и статьи с другими способами использования этих изделий вы можете найти в сети.

Сегодня постоянные магниты находят полезное применение во многих областях человеческой жизни. Порой мы не замечаем их присутствия, однако практически в любой квартире в различных электроприборах и в механических устройствах, если внимательно приглядеться, можно обнаружить . Электробритва и динамик, видеоплеер и настенные часы, мобильный телефон и микроволновка, дверца холодильника наконец - всюду можно встретить постоянные магниты.

Они применяются в медицинской технике и в измерительной аппаратуре, в различных инструментах и в автомобильной промышленности, в двигателях постоянного тока, в акустических системах, в бытовых электроприборах и много-много где еще: радиотехника, приборостроение, автоматика, телемеханика и т. д. - ни одна из этих областей не обходится без использования постоянных магнитов.

Конкретные решения с применением постоянных магнитов можно было бы перечислять бесконечно, тем не менее, предметом данной статьи станет краткий обзор нескольких применений постоянных магнитов в электротехнике и электроэнергетике.


Со времен Эрстеда и Ампера широко известно, что проводники с током и электромагниты взаимодействуют с магнитным полем постоянного магнита. На этом принципе основана работа многих двигателей и генераторов. За примерами далеко ходить не надо. Вентилятор в блоке питания вашего компьютера имеет ротор и статор.

Крыльчатка с лопастями представляет собой ротор с расположенными по кругу постоянными магнитами, а статор - это сердечник электромагнита. Перемагничивая статор, электронная схема создает эффект вращения магнитного поля статора, за магнитным полем статора, стремясь к нему притянуться, следует магнитный ротор - вентилятор вращается. Аналогичным образом реализовано вращение жесткого диска, и подобным образом работают .


В электрогенераторах постоянные магниты также нашли свое применение. Синхронные генераторы для домашних ветряков, например, - одно из прикладных направлений.

На статоре генератора по окружности располагаются генераторные катушки, которые в процессе работы ветряка пересекаются переменным магнитным полем движущихся (под действием дующего на лопасти ветра) постоянных магнитов, закрепленных на роторе. Повинуясь , пересекаемые магнитами проводники генераторных катушек направляют в цепь потребителя ток.

Такие генераторы используются не только в ветряках, но и в некоторых промышленных моделях, где вместо обмотки возбуждения на роторе установлены постоянные магниты. Достоинство решений с магнитами - возможность получить генератор с низкими номинальными оборотами.

В проводящий диск вращается в поле постоянного магнита. Ток потребления, походя через диск, взаимодействует с магнитным полем постоянного магнита, и диск вращается.

Чем больше ток - тем выше частота вращения диска, поскольку вращающий момент создается силой Лоренца, действующей на движущиеся заряженные частицы внутри диска со стороны магнитного поля постоянного магнита. По сути, такой счетчик - это небольшой мощности с магнитом на статоре.


Для измерения слабых токов применяют - очень чувствительные измерительные приборы. Здесь подковообразный магнит взаимодействует с маленькой токонесущей катушкой, которая подвешена в зазоре между полюсами постоянного магнита.

Отклонение катушки в процессе измерения происходит благодаря вращающему моменту, который создается из-за магнитной индукции, возникающей при прохождении тока через катушку. Таким образом, отклонение катушки оказывается пропорционально значению результирующей магнитной индукции в зазоре, и, соответственно, току в проводе катушки. Для малых отклонений шкала гальванометра получается линейной.


Наверняка на вашей кухне есть микроволновка. И в ней есть целых два постоянных магнита. Для генерации СВЧ-диапазона, в микроволновке установлен . Внутри магнетрона электроны движутся в вакууме от катода к аноду, и в процессе движения их траектория должна искривляться, чтобы резонаторы на аноде возбуждались достаточно мощно.

Для искривления траектории электронов, сверху и снизу вакуумной камеры магнетрона установлены кольцевые постоянные магниты. Магнитное поле постоянных магнитов искривляет траектории движения электронов так, что получается мощный вихрь из электронов, который возбуждает резонаторы, которые в свою очередь генерируют электромагнитные волны СВЧ-диапазона для разогрева пищи.


Чтобы головка жесткого диска точно позиционировалась, ее движения в процессе записи и считывания информации должны очень точно управляться и контролироваться. Снова на помощь приходит постоянный магнит. Внутри жесткого диска, в магнитном поле закрепленного неподвижно постоянного магнита, перемещается катушка с током, связанная с головкой.

Когда на катушку головки подается ток, магнитное поле этого тока, в зависимости от его значения, отталкивает катушку от постоянного магнита сильнее или слабее, в ту или иную сторону, таким образом головка приходит в движение, причем с высокой точностью. Этим движением управляет микроконтроллер.


В целях повышения эффективности энергопотребления, в некоторых странах для предприятий сооружают механические накопители электроэнергии. Это электромеханические преобразователи, работающие на принципе инерционного накопления энергии в форме кинетической энергии вращающегося маховика, называемые .

Так например, в Германии компания ATZ разработала кинетический накопитель энергии на 20 МДж, мощностью 250 кВт, причем удельная энергоемкость составляет примерно 100 Вт-ч/кг. При весе маховика в 100 кг, при вращении со скоростью 6000 об/мин, цилиндрической конструкции диаметром 1,5 метра нужны были качественные подшипники. В итоге нижний подшипник был изготовлен, конечно, на основе постоянных магнитов.

Для начала нужно понять, что такое магнит вообще. Магнит - это природный энергетический материал, который имеет в себе неиссякаемое энергетическое поле и два полюса, которые называются северным и южным. Хотя в наше время человечество, конечно же, научилось создавать это необычное явление искусственно.

Силу двух полюсов магнита человек научился использовать практически везде. Современное общество повседневно пользуется вентилятором - в его двигателе стоят специальные магнитные щётки, абсолютно каждый день и до глубокой ночи смотрят телевизор, работают на компьютере, а в нём достаточно большое количество этих элементов. У каждого в доме на стене висят часы, всякие красивые маленькие игрушки на дверке холодильника, колонки на всём звуковом оборудовании работают исключительно благодаря этому чудесному магниту.

На промышленных предприятиях рабочие пользуются электродвигателями, сварочными аппаратами. В строительстве используется магнитный подъёмный кран, железо-отделительная лента. Встроенное в неё магнитное устройство помогает абсолютно отделить стружку и окалину от готовой продукции. Эти магнитные ленты также используются в пищевой промышленности.

Еще магнит применяется в ювелирных изделиях, а это браслеты, цепочки, всевозможные кулоны, кольца, серёжки, и даже заколки для волос.

Нужно понять, что без этого природного элемента наше существование станет намного сложнее. Во многих предметах и устройствах используются магниты – от детских игрушек до вполне серьезных вещей. Ведь не зря в электротехнике и физике есть специальный раздел – электричество и магнетизм. Эти две науки тесно связаны. Все предметы, где имеется этот элемент, сразу и не перечислишь.

В наше время всё больше появляются новых изобретений и во многих из них имеются магниты, особенно если это связано с электротехникой. Даже всемирно известный коллайдер работает исключительно при помощи электромагнитов.

Магнит также обширно используется в медицинских целях – например, для резонансного сканирования внутренних органов человека, а также и в хирургических целях. Он используется для всяческих магнитных поясов, массажных кресел и так далее. Целебные свойства магнита не придуманы – например, в Грузии на Черном море есть уникальный курорт Уреки, где песок не обычный – желтый, а черный – магнитный. Туда едут лечить многие заболевания, в особенности детские – ДЦП, нервные расстройства, и даже гипертонию.

Ещё магниты используются на перерабатывающих предприятиях. Например, старые автомобили сначала давят прессом, а потом грузят магнитным погрузчиком.

Также бывают так называемые неодимовые магниты. Они используются в различных сферах промышленности, где температура не выше 80°C. Эти магниты используют сейчас практически везде.

Магниты сейчас настолько тесно вошли в нашу жизнь, что без них наша жизнь станет очень сложной –примерно на уровне 18-19 веков. Если бы прямо сейчас все магниты исчезли, мы моментально лишились бы электричества – остались бы только такие его источники, как аккумуляторы и батарейки. Ведь в устройстве любого генератора тока важнейшая часть – именно магнит. И не думайте, что Ваш автомобиль заведется от аккумулятора – стартер ведь тоже представляет собой электрический двигатель, где самая важная часть – магнит. Да, можно жить и без магнитов, но жить при этом придется так, как жили наши предки лет 100 и более назад…

Существует два основных типа магнитов: постоянные и электромагниты. Определить, что же такое постоянный магнит, можно на основании главного его свойства. Постоянный магнит получил свое название за то, что его магнетизм всегда «включен». Он генерирует собственное магнитное поле, в отличие от электромагнита, сделанного из проволоки, обернутой вокруг железного сердечника, и требующего протекания тока для создания магнитного поля.

История изучения магнитных свойств

Столетия назад люди открыли, что некоторые типы горных пород обладают оригинальными особенностями: притягиваются к железным предметам. Упоминание о магнетите встречается в древних исторических летописях: больше двух тысячелетий назад в европейских и намного ранее в восточноазиатских. Сначала он оценивался как любопытный предмет.

Позже магнетит стали использовать для навигации, обнаружив, что он стремится занять определенное положение, когда ему предоставлена свобода вращения. Научное исследование, проведенное П. Перегрином в 13-м веке, показало, что сталь может приобрести эти особенности после потирания магнетитом.

У намагниченных предметов было два полюса: «северный» и «южный», относительно магнитного поля Земли. Как обнаружил Перегрин, изоляция одного из полюсов не представлялась возможной, если разрезать осколок магнетита надвое, – каждый отдельный фрагмент имел в результате собственную пару полюсов.

В соответствии с сегодняшними представлениями магнитное поле постоянных магнитов – это результирующая ориентация электронов в едином направлении. Только некоторые разновидности материалов взаимодействуют с магнитными полями, значительно меньшее их количество способно сохранять постоянное МП.

Свойства постоянных магнитов

Основными свойствами постоянных магнитов и создаваемого ими поля являются:

  • существование двух полюсов;
  • противоположные полюса притягиваются, а одноименные отталкиваются (как положительные и отрицательные заряды);
  • магнитная сила незаметно распространяется в пространстве и проходит через объекты (бумага, дерево);
  • наблюдается усиление интенсивности МП вблизи полюсов.

Постоянные магниты поддерживают МП без внешней помощи. Материалы в зависимости от магнитных свойств делятся на основные виды:

  • ферромагнетики – легко намагничивающиеся;
  • парамагнетики – намагничиваются с большим трудом;
  • диамагнетики – склонны отражать внешнее МП путем намагничивания в противоположном направлении.

Важно! Магнито-мягкие материалы, такие как сталь, проводят магнетизм при прикреплении к магниту, но это прекращается при его удалении. Постоянные магниты изготавливаются из магнито-твердых материалов.

Как работает постоянный магнит

Его работа связана с атомной структурой. Все ферромагнетики создают естественное, хотя и слабое, МП, благодаря электронам, окружающим ядра атомов. Эти группы атомов способны ориентироваться в едином направлении и называются магнитными доменами. Каждый домен обладает двумя полюсами: северным и южным. Когда ферромагнитный материал не намагничен, его области ориентированы в случайных направлениях, а их МП компенсируют друг друга.

Чтобы создать постоянные магниты, ферромагнетики нагреваются при очень высоких температурах и подвергаются воздействию сильного внешнего МП. Это приводит к тому, что отдельные магнитные домены внутри материала начинают ориентироваться по направлению внешнего МП до тех пор, пока все домены не выровняются, достигнув точки магнитного насыщения. Затем материал охлаждают, и выровненные домены блокируются в нужном положении. После удаления внешнего МП магнито-твердые материалы будут удерживать большую часть своих доменов, создавая постоянный магнит.

Характеристики постоянного магнита

  1. Магнитную силу характеризует остаточная магнитная индукция. Обозначается Br. Это та сила, которая остается после исчезновения внешнего МП. Измеряется в тестах (Тл) или гауссах (Гс);
  2. Коэрцитивность или сопротивление размагничиванию – Нс. Измеряется в А/м. Показывает, какова должна быть напряженность внешнего МП для того, чтобы размагнитить материал;
  3. Максимальная энергия – BHmax. Рассчитывается путем умножения остаточной магнитной силы Br и коэрцитивности Нс. Измеряется в МГсЭ (мегагауссэрстед);
  4. Коэффициент температуры остаточной магнитной силы – Тс of Br. Характеризует зависимость Br от температурного значения;
  5. Tmax – наивысшее значение температуры, при достижении которого постоянные магниты утрачивают свойства с возможностью обратного восстановления;
  6. Tcur – наивысшее значение температуры, когда магнитный материал безвозвратно утрачивает свойства. Этот показатель называется температурой Кюри.

Индивидуальные характеристики магнита изменяются в зависимости от температуры. При разных значениях температуры разные типы магнитных материалов работают по-разному.

Важно! Все постоянные магниты теряют процент магнетизма при подъеме температуры, но с разной скоростью, зависящей от их типа.

Типы постоянных магнитов

Всего существует пять типов постоянных магнитов, каждый из которых изготовляется по-разному на основе материалов с отличающимися свойствами:

  • альнико;
  • ферриты;
  • редкоземельные SmCo на основе кобальта и самария;
  • неодимовые;
  • полимерные.

Альнико

Это постоянные магниты, состоящие в основном из комбинации алюминия, никеля и кобальта, но могут также включать медь, железо и титан. Благодаря свойствам магнитов альнико, они могут работать при самых высоких температурах, сохраняя свой магнетизм, однако они легче размагничиваются, чем ферритовые или редкоземельные SmCo. Они были первыми серийными постоянными магнитами, заменяющими намагниченные металлы и дорогие электромагниты.

Применение:

  • электродвигатели;
  • термическая обработка;
  • подшипники;
  • аэрокосмические аппараты;
  • военная техника;
  • высокотемпературное погрузо-разгрузочное оборудование;
  • микрофоны.

Ферриты

Для изготовления ферритовых магнитов, известных еще как керамические, применяются карбонат стронция и оксид железа, в соотношении 10/90. Оба материала в изобилии и экономически доступны.

Из-за низких издержек производства, устойчивости к нагреву (до 250°C) и коррозии ферритовые магниты – одни из самых популярных для повседневного применения. Они имеют большую внутреннюю коэрцитивность, чем альнико, но меньшую магнитную силу, чем неодимовые аналоги.

Применение:

  • звуковые колонки;
  • охранные системы;
  • большие пластинчатые магниты для удаления загрязнения железом технологических линий;
  • электродвигатели и генераторы;
  • медицинские инструменты;
  • подъемные магниты;
  • морские поисковые магниты;
  • устройства, основанные на работе вихревых токов;
  • выключатели и реле;
  • тормоза.

Редкоземельные магниты SmCo

Магниты из кобальта и самария работают в широком температурном диапазоне, имеют высокие температурные коэффициенты и высокую коррозионную стойкость. Этот вид сохраняет магнитные свойства даже при температурах ниже абсолютного нуля, что делает их популярными для использования в криогенных установках.

Применение:

  • турботехника;
  • насосные муфты;
  • влажные среды;
  • высокотемпературные устройства;
  • миниатюрные гоночные автомобили с электроприводом;
  • радиоэлектронные устройства для работы в критических условиях.

Неодимовые магниты

Сильнейшие существующие магниты, состоящие из сплава неодима, железа и бора. Благодаря их огромной силе, даже миниатюрные магниты эффективны. Это обеспечивает универсальность использования. Каждый человек постоянно находится рядом с одним из неодимовых магнитов. Они есть, например, в смартфоне. Изготовление электродвигателей, медтехника, радиоэлектроника опираются на сверхпрочные неодимовые магниты. Из-за их сверхпрочности, огромной магнитной силы и стойкости к размагничиванию возможно изготовление образцов до 1 мм.

Применение:

  • жесткие диски;
  • звуковоспроизводящие устройства – микрофоны, акустические датчики, наушники, громкоговорители;
  • протезы;
  • насосы с магнитной связью;
  • дверные доводчики;
  • двигатели и генераторы;
  • замки на ювелирных изделиях;
  • сканеры МРТ;
  • магнитотерапия;
  • датчики ABS в автомобилях;
  • подъемное оборудование;
  • магнитные сепараторы;
  • герконовые переключатели и т. д.

Гибкие магниты содержат магнитные частицы, находящиеся внутри полимерного связующего. Используются для уникальных устройств, где невозможна установка твердых аналогов.

Применение:

  • дисплейная реклама – быстрая фиксация и быстрое удаление на выставках и мероприятиях;
  • знаки транспортных средств, учебные школьные панели, логотипы компаний;
  • игрушки, головоломки и игры;
  • маскирование поверхностей для окраски;
  • календари и магнитные закладки;
  • оконные и дверные уплотнения.

Большинство постоянных магнитов являются хрупкими и не должны использоваться в качестве структурных элементов. Они изготавливаются в стандартных формах: кольца, стержни, диски, и индивидуальных: трапеции, дуги и др. Неодимовые магниты из-за высокого содержания железа подвержены коррозии, поэтому покрываются сверху никелем, нержавеющей сталью, тефлоном, титаном, каучуком и другими материалами.

Видео

  • Ш Магнитные носители информации: VHS кассеты содержат катушки из магнитной ленты. Видео и звуковая информация кодируется на магнитном покрытии на ленте. Также в компьютерных дискетах и жестких дисках запись данных происходит на тонком магнитном покрытии. Однако носители информации не являются магнитами в строгом смысле, так как они не притягивают предметы. Магниты в жёстких дисках используются в ходовом и позиционирующем электродвигателях.
  • Ш Кредитные, дебетовые, и ATM карты: Все эти карточки имеют магнитную полосу на одной стороне. Эта полоса кодирует информацию, необходимую для соединения с финансовым учреждением и связи с их счетами.
  • Ш Обычные телевизоры и компьютерные мониторы: телевизоры и компьютерные мониторы, содержащие электронно-лучевую трубку используют электромагнит для управления пучком электронов и формирования изображения на экране. Плазменные панели и ЖК мониторы используют другие технологии.
  • Ш Громкоговорители и микрофоны: большинство громкоговорителей используют постоянный магнит и токовую катушку для преобразования электрической энергии (сигнала) в механическую энергию (движение, которое создает звук). Обмотка намотана на катушку, прикрепляется к диффузору и по ней протекает переменный ток, который взаимодействует с полем постоянного магнита.
  • Ш Другой пример использования магнитов в звукотехнике -- в головке звукоснимателя электрофона и в кассетных диктофонах в качестве экономичной стирающей головки.
  • Ш Магнитный сепаратор тяжелых минералов
  • Ш Электродвигатели и генераторы: некоторые электрические двигатели (так же, как громкоговорители) основываются на комбинации электромагнита и постоянного магнита. Они преобразовывают электрическую энергию в механическую энергию. Генератор, наоборот, преобразует механическую энергию в электрическую энергию путем перемещения проводника через магнитное поле.
  • Ш Трансформаторы: устройства передачи электрической энергии между двумя обмотками провода, которые электрически изолированы, но связаны магнитно.
  • Ш Магниты используются в поляризованных реле. Такие устройства запоминают своё состояние на время выключения питания.
  • Ш Компасы: компас (или морской компас) является намагниченным указателем, который может свободно вращаться и ориентируется на направление магнитного поля, чаще всего магнитного поля Земли.
  • Ш Искусство: виниловые магнитные листы могут быть присоединены к живописи, фотографии и другим декоративным изделиям, что позволяет присоединять их к холодильникам и другим металлическим поверхностям.
  • Ш Магниты часто используются в игрушках. M-TIC использует магнитные стержни, связанные с металлическими сферами
  • Ш Игрушки: Учитывая их способность противостоять силе тяжести на близком расстоянии, магниты часто используются в детских игрушках с забавными эффектами.
  • Ш Магниты могут использоваться для производства ювелирных изделий. Ожерелья и браслеты могут иметь магнитную застежку, или могут быть изготовлены полностью из серии связанных магнитов и черных бусин.
  • Ш Магниты могут поднимать магнитные предметы (железные гвозди, скобы, кнопки, скрепки), которые либо являются слишком мелкими, либо их трудно достать или они слишком тонкие чтобы держать их пальцами. Некоторые отвертки специально намагничиваются для этой цели.
  • Ш Магниты могут использоваться при обработке металлолома для отделения магнитных металлов (железа, стали и никеля) от немагнитных (алюминия, цветных сплавов и т. д.). Та же идея может быть использована в рамках так называемого «Магнитного испытания», в которой кузов автомобиля обследуется с магнитом для выявления областей, отремонтированых с использованием стекловолокна или пластиковой шпатлевки.
  • Ш Маглев: поезд на магнитном подвесе, движимый и управляемый магнитными силами. Такой состав, в отличие от традиционных поездов, в процессе движения не касается поверхности рельса. Так как между поездом и поверхностью движения существует зазор, трение исключается, и единственной тормозящей силой является сила аэродинамического сопротивления..
  • Ш Магниты используются в фиксаторах мебельных дверей.
  • Ш Если магниты поместить в губки, то эти губки можно использовать для мытья тонких листовых немагнитных материалов сразу с обеих сторон, причём одна сторона может быть труднодоступной. Это могут быть, например, стёкла аквариума или балкона.
  • Ш Магниты используются для передачи вращающего момента «сквозь» стенку, которой может являться, например, герметичный контейнер электродвигателя. Так была устроена игрушка ГДР «Подводная лодка».
  • Ш Магниты совместно с герконом применяются в специальных датчиках положения. Например, в датчиках дверей холодильников и охранных сигнализаций.
  • Ш Магниты совместно с датчиком Холла используют для определения углового положения или угловой скорости вала.
  • Ш Магниты используются в искровых разрядниках для ускорения гашения дуги.
  • Ш Магниты используются при неразрушающем контроле магнитопорошковым методом (МПК)
  • Ш Магниты используются для отклонения пучков радиоактивных и ионизирующих излучений, например при наблюдении в камерах.
  • Ш Магниты используются в показывающих приборах с отклоняющейся стрелкой, например, амперметр. Такие приборы весьма чувствительны и линейны.
  • Ш Магниты применяются в СВЧ вентилях и циркуляторах.
  • Ш Магниты применяются в составе отклоняющей системы электронно-лучевых трубок для подстройки траектории электронного пучка.
  • Ш До открытия закона сохранения энергии, было много попыток использовать магниты для построения «вечного двигателя». Людей привлекала, казалось бы, неисчерпаемая энергия магнитного поля постоянного магнита, которые были известны очень давно. Но рабочий макет так и не был построен.