Урок "откладывание вектора от данной точки". Векторы




Что такое вектор? Понятие вектора возникает там, где приходится иметь дело с объектами, которые характеризуются величиной и направлением: например, скорость, сила, давление. Такие величины называются векторными величинами или векторами. Понятие вектора возникает там, где приходится иметь дело с объектами, которые характеризуются величиной и направлением: например, скорость, сила, давление. Такие величины называются векторными величинами или векторами.


Понятие вектора Рассмотрим произвольный отрезок. На нем можно указать два направления. Чтобы выбрать одно из направлений, один конец отрезка назовем НАЧАЛОМ, а другой – КОНЦОМ и будем считать, что отрезок направлен от начала к концу. Определение. Определение. Отрезок, для которого указано, какой из его концов считается началом, а какой - концом, называется направленным отрезком или вектором. Отрезок, для которого указано, какой из его концов считается началом, а какой - концом, называется направленным отрезком или вектором.




Понятие вектора Векторы часто обозначают и одной строчной латинской буквой со стрелкой над ней: Векторы часто обозначают и одной строчной латинской буквой со стрелкой над ней: Любая точка плоскости также является вектором, который называется НУЛЕВЫМ. Начало нулевого вектора совпадает с его концом: Любая точка плоскости также является вектором, который называется НУЛЕВЫМ. Начало нулевого вектора совпадает с его концом: ММ = 0. ММ = 0. a b c М


Понятие вектора Длиной или модулем ненулевого вектора АВ называется длина отрезка АВ: Длиной или модулем ненулевого вектора АВ называется длина отрезка АВ: АВ = а = АВ = 5 АВ = а = АВ = 5 с = 17 с = 17 Длина нулевого вектора считается равной нулю: Длина нулевого вектора считается равной нулю: ММ = 0. ММ = 0. a М В А с


Коллинеарные векторы Ненулевые векторы называются коллинеарными, если они лежат либо на одной прямой, либо на параллельных прямых. Коллинеарные векторы могут быть сонаправленными или противоположно направленными. Ненулевые векторы называются коллинеарными, если они лежат либо на одной прямой, либо на параллельных прямых. Коллинеарные векторы могут быть сонаправленными или противоположно направленными. Нулевой вектор считается коллинеарным любому вектору. Нулевой вектор считается коллинеарным любому вектору. аb c d m n s L




Откладывание вектора от данной точки Если точка А – начало вектора а, то говорят, что вектор а отложен от точки А. Если точка А – начало вектора а, то говорят, что вектор а отложен от точки А. Утверждение: От любой точки М можно отложить вектор, равный данному вектору а, и притом только один. Утверждение: От любой точки М можно отложить вектор, равный данному вектору а, и притом только один. Равные векторы, отложенные от разных точек, часто обозначают одной и той же буквой Равные векторы, отложенные от разных точек, часто обозначают одной и той же буквой А а М а


Сумма двух векторов Рассмотрим пример: Рассмотрим пример: Петя из дома(D) зашел к Васе(V), а потом поехал в кинотеатр(К). Петя из дома(D) зашел к Васе(V), а потом поехал в кинотеатр(К). В результате этих двух перемещений, которые можно представить векторами DV и VK, Петя переместился из точки D в К, т.е. на вектор DК: В результате этих двух перемещений, которые можно представить векторами DV и VK, Петя переместился из точки D в К, т.е. на вектор DК: DK=DB+BK. DK=DB+BK. Вектор DK называется суммой векторов DB и BK. D V K


Сумма двух векторов Правило треугольника Пусть а и b – два вектора. Отметим произвольную точку А и отложим от этой точки АВ = а, затем от точки В отложим вектор ВС = b. Пусть а и b – два вектора. Отметим произвольную точку А и отложим от этой точки АВ = а, затем от точки В отложим вектор ВС = b. АС = а + b АС = а + b a b A a b B C
Противоположные векторы Пусть а – произвольный ненулевой вектор. Пусть а – произвольный ненулевой вектор. Определение. Вектор b называется противоположным вектору а, если а и b имеют равные длины и противоположно направлены. a = АВ, b = BA Вектор, противоположный вектору c, обозначается так: -c. Очевидно, с+(-с)=0 или АВ+ВА=0 А B a b c -c


Вычитание векторов Определение. Разностью двух векторов а и b называется такой вектор, сумма которого с вектором b равна вектору а. Определение. Разностью двух векторов а и b называется такой вектор, сумма которого с вектором b равна вектору а. Теорема. Для любых векторов а и b справедливо равенство а - b = а + (-b). Задача. Даны векторы а и b. Построить вектор а – b. а а b -b a - b



1. Дать определение равенства геометрический векторов.

Два геометрических вектора называют равными, если:

они коллинеарны и однонаправлены;

их длины совпадают.

2. Дать определение суммы векторов и умножения вектора на число.

Суммой a + b двух векторов a и b называют вектор c, построенный по следующему правилу треугольника. Совместим начало вектора b с концом вектора a. Тогда суммой этих векторов будет вектор c, начало которого совпадает с началом a, а конец - с концом b.

Наряду с правилом треугольника существует правило параллелограмма. Выбрав для векторов a и b общее начало, строим на этих векторах параллелограмм. Тогда диагональ параллелограмма, выходящая из общего начала векторов, определяет их сумму.

При умножении вектора на число, направление вектора не меняется, а длина вектора умножается на число.

3. Дать определения коллинеарных и компланарных векторов.

Два геометрических вектора называют коллинеарными, если они лежат на одной прямой или на параллельных прямых.

Три геометрических вектора называют компланарными, если эти векторы лежат на прямых, параллельных некоторой плоскости.

4. Дать определение линейно зависимой и линейно независимой системы векторов.

Векторы a 1 , … , a n называют линейно зависимыми, если существует такой набор коэффициентовα 1 , . . . , α n , чтоα 1 a 1 + . . . + α n a n = 0 и при этом хотя бы один из этих коэффициентов ненулевой.

Если указанного набора коэффициентов не существует, то векторы называют линейно независимыми.

5. Сформулировать геометрические критерии линейной зависимости 2-х и 3-х векторов.

Два вектора линейно зависимы тогда и только тогда, когда они коллинеарны.

6. Дать определение базиса и координат вектора.

Базис- множество таких векторов в векторном пространстве, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого множества - базисных векторов.

Координаты вектора ― коэффициенты единственно возможной линейной комбинации базисных векторов в выбранной системе координат, равной данному вектору.

7. Сформулировать теорему о разложении вектора по базису.

Любой вектор векторного пространства можно разложить по его базису и притом единственным способом.

Если = (̅

– базис , ̅

= (1, 2, 3) , то существует набор чисел(

…) такой, что

̅ + + ̅̅, где (

…) – координаты вектора в базисе.

8. Дать определение ортогональной скалярной проекции вектора на направление.

Ортогональной проекции вектора на направление вектора называется скалярная величина Пр = | | cos() , где угол – угол между векторами.

9. Дать определение скалярного произведения векторов.

Скалярным произведением двух векторов и называют число, равное cos -

произведению длин | | и| | этих векторов на косинус угла между ними.

10. Сформулировать свойство линейности скалярного произведения.

λ(̅ ̅ ).

= ̅ с̅+ ̅ с̅.

11. Записать формулу для вычисления скалярного произведения двух векторов, заданных в ортонормированном базисе.

̅ = { , }, ̅ = { , }

̅ ̅ = + +

12. Записать формулу для косинуса угла между векторами, заданными в ортонормированном базисе.

̅ ̅ cos =̅ |̅|| |

13. Дать определение правой и левой тройки векторов.

Упорядоченную тройку некомпланарных векторов a, b, c называют правой, если направление вектораa совмещается с направлением вектораb при помощи кратчайшего поворота вектораa в плоскости этих векторов, который со стороны векторас совершается против хода часовой стрелки. В противном случае (поворот по ходу часовой стрелки) эту тройку называют левой.

14. Дать определение векторного произведения векторов.

Векторным произведением неколлинеарных векторов̅ и̅ называют такой векторс̅ , который удовлетворяет следующим трем условиям:

вектор c ортогонален векторамa иb ;

длина вектора c равна |с̅ | = |̅ | |̅ |sin ϕ, где ϕ - угол между векторами̅ и̅ ;

упорядоченная тройка векторов ̅ ,̅ ,с̅ является правой.

15. Сформулировать свойство коммутативности (симметричности) скалярного произведения и свойство антикоммутативности (антисимметричности) векторного произведения.

Скалярное произведение коммутативно: ̅ ̅ =̅ ̅ .

Векторное произведение антикоммутативно: ̅ x̅ =− ̅ x̅ .

16. Сформулировать свойство линейности векторного произведения векторов.

свойство ассоциативности совместно с умножением на число (λ ̅ )×̅ = λ(̅ ×̅ );

свойство дистрибутивности относительно сложения (̅ +̅ )×с̅ =̅ ×с̅ +̅ ×с̅ .

Cвойства ассоциативности и дистрибутивности векторного произведения объединяют, аналогично случаю скалярного произведения, в свойство линейности векторного произведения

относительно первого сомножителя. В силу свойства антикоммутативности векторного произведения векторное произведение линейно и относительно второго сомножителя:

̅ ×(λ̅ ) = −(λ̅ )×̅ = −λ(̅ ×̅ ) = λ(̅ ×̅ )

̅ ×(̅ +̅с ) = −(̅ +̅с )×̅ = −(̅ ×̅ +̅с ×̅ ) =̅ ×̅ +̅ ×̅с .

17. Записать формулу для вычисления векторного произведения в правом ортонормированном базисе.

̅ = { , }, ̅ = { , }.

18. Дать определение смешанного произведения векторов.

Смешанным произведением трех векторов̅ ,̅ ,с̅ называют число, равное (̅ ×̅ )с̅ - скалярному произведению векторного произведения первых двух векторов и третьего вектора.

19. Сформулировать свойство перестановки (кососимметричности) смешанного произведения.

Для смешанного произведения действует правило циклической перестановки :

̅ с̅ = с̅ ̅

= ̅с ̅= − ̅ с̅

= − с̅ ̅= − ̅ ̅с.

20. Сформулировать свойство линейности смешанного произведения.

Для смешанного произведения выполняется свойство ассоциативности относительно

умножения векторов на число: (λ ̅ )с̅

= λ(̅ с̅ ).

Для смешанного произведения выполняется свойство дистрибутивности: (̅̅̅ +̅̅̅ )с̅

= ̅̅̅

̅с + ̅̅̅

̅с.

Эти свойства смешанного произведения сформулированы для первого сомножителя. Однако при помощи циклической перестановки можно доказать аналогичные

утверждения и для второго и для третьего сомножителей, т.е. верны равенства

̅ (λ̅ )̅с = λ(̅ ̅ ̅с ),̅ ̅ (λ̅с ) = λ(̅ ̅ ̅с ),̅ (̅̅̅ 1 +̅̅̅ 2 )̅с =̅ ̅̅̅ 1 ̅с +̅ ̅̅̅ 2 ̅с ,̅ ̅ (̅ 1 +̅ 2 ) =̅ ̅ ̅ 1 +̅ ̅ ̅ 2 ,

и в итоге имеем свойство линейности смешанного произведенияпо каждому сомножителю.

21. Записать формулу для вычисления смешанного произведения в правом ортонормированном базисе.

̅ = { , }, ̅ = { , }, ̅= { , }

22. Записать общее уравнение плоскости и уравнение “в отрезках”. Объяснить геометрический смысл входящих в эти уравнения параметров.

Уравнение Ax + By + Cz + D = 0 называют общим уравнением плоскости . Коэффициенты A, B, C при неизвестных в этом уравнении имеют наглядный геометрический смысл: вектор n = {A; B; C} перпендикулярен плоскости. Его называют нормальным вектором плоскости. Он, как и общее уравнение плоскости, определяется с точностью до (ненулевого) числового множителя.

Уравнение + + = 1 называютуравнением плоскости в отрезках , где a, b, c –

соответствующие координаты точек лежащих на осях OX, OY и OZ соответственно.

23. Записать уравнение плоскости, проходящей через 3 данные точки.

Пусть 1 (1 , 1 , 1 ) ,2 (2 , 2 , 2 ), 3 (3 , 3 , 3 ) – заданные точки, а точка M(x, y, z) – точка, принадлежащая плоскости, образованной точками1 , 2 и 3 , тогда уравнение плоскости имеет

− 1

− 1

− 1

| 2 −1

2 − 1

2 −1 | = 0

3 − 1

3 − 1

3 − 1

24. Сформулировать условия параллельности и перпендикулярности двух плоскостей.

Две плоскости перпендикулярны , если их нормальные векторыортогональны .

Две плоскости параллельны , если их нормальные векторыколлинеарны .

25. Записать формулу для расстояния от точки до плоскости, заданной общим уравнением.

Для нахождения расстояния от точки 0 (0 , 0 , 0 ) до плоскости

: + + + = 0 используется формула:(,) = | 0 + 0 + 0 + |

√ 2 +2 +2

26. Записать канонические и параметрические уравнения прямой в пространстве. Объяснить геометрический смысл входящих в эти уравнения параметров.

Уравнение { = 0 + , где {l; m; n} - координаты направляющего вектора̅ прямой L и

(0 ;0 ;

– координаты точки 0 Lв прямо угольной системе координат, называют

параметрическими уравнениями прямой в пространстве.

Уравнение

− 0

− 0

− 0

называют каноническими уравнениями прямойв

пространстве.

27. Записать уравнение прямой, проходящей через две данные точки в пространстве.

Уравнения

− 1

− 1

− 1

называют уравнениями прямой, проходящей через две точки

1 (1 ,1 ,1 )и 2 (2 ,2 ,2 ).

28. Записать условие принадлежности двух прямых одной плоскости.

Пусть а иb - направляющие векторы этих прямых, а точки M1 и M2 принадлежат соответственно прямым иl 1 иl 2 . Тогда две прямые будут принадлежать одной плоскости, если смешанное произведение (a, b, M1 M2 ) равно 0.

29. Записать формулу для расстояния от точки до прямой в пространстве.

Расстояние от точки 1 до прямой L может быть вычислено по формуле:

30. Записать формулу для расстояния между скрещивающимися прямыми.

Расстояние между скрещивающимися прямыми 1 и2 может быть вычислено по формуле:

принадлежащие прямым.

1. Доказать геометрический критерий линейной зависимости трёх векторов.

Три вектора линейно зависимы тогда и только тогда, когда они компланарны.

Доказательство:

Если три вектора ̅ ,̅ ,̅ линейно зависимы, то, согласно теореме 2.1 (о линейной зависимости векторов), один из них, например̅ , является линейной комбинацией остальных:̅ = β̅ + γ̅ . Совместим начала векторов̅ и̅ в точке A. Тогда векторы β̅ , γ̅ будут иметь общее начало в точке A и по правилу параллелограмма их сумма, т.е. вектор̅ , будет представлять собой вектор с началом A и концом, являющимся вершиной параллелограмма, построенного на векторахслагаемых. Таким образом, все векторы лежат в одной плоскости, т.е. компланарны.

Пусть векторы ̅ ,̅ ,̅ компланарны. Если один из этих векторов является нулевым, то очевидно, что он будет линейной комбинацией остальных. Достаточно все коэффициенты линейной комбинации взять равными нулю. Поэтому можно считать, что все три вектора не являются нулевыми. Совместим начала этих векторов в общей точке O. Пусть их концами будут соответственно точки A, B, C (рис. 2.1). Через точку C проведем прямые, параллельные прямым, проходящим через пары точек O, A и O, B. Обозначив точки пересечения через A’ и B’, получим

параллелограмм OA’CB’, следовательно, = ′ + ′ . Вектор′ и ненулевой вектор̅

коллинеарны, а потому первый из них может быть получен умножением второго на

действительное число α: ′ = . Аналогично′ = , β R.В результате получаем , что

̅̅̅̅̅ ̅̅̅̅̅

= ′ + ′ , т.е. вектор̅ является линейной комбинацией векторов̅ и. Согласно теореме

̅ являются линейно зависимыми.

2.1 (о линейной зависимости векторов), векторы ̅ ,

2. Доказать теорему о разложении вектора по базису.

Теорема о разложении вектора по базису. Если = (̅

– базис , ̅

= (1, 2, 3), то

существует набор чисел (

…) такой, что̅= ̅̅̅

̅ + + ̅ ̅, где (

…) – координаты

вектора в базисе.

Доказательство: (для i = 2)

(̅1 , ̅2 )– базис 2 , ̅2

По определению пространства V2: x, e1, e2 – компланарны => (критерий линейной зависимости 3- х векторов) => ̅ ,̅ 1 , ̅ 2 линейно зависимы =>0 , 1 , 2 .

0 ̅+1 ̅1 +2 ̅2 = 0̅ ,0 2 +1 2 +2 2 ≠ 0

1 случай: 0 = 0 , тогда1 ̅ 1 + 2 ̅ 2 = 0 ̅ ,1 2 + 2 2 ≠ 0 , значит1 , 2 – линейно зависимые (̅ 1 , ̅ 2 ) – лин. завис. ̅ 1 и ̅ 2 коллинеарны.

2 случай: 0 ≠ 0

̅= (− 1 ) ̅1 + (−2 ) ̅2 0 0

Доказали существование.

Пусть существует 2 представления:

̅= 1 ̅1 +2 ̅2

Разность:

0 ̅ = ̅− ̅= 1 ̅ 1 + 2 ̅ 2 − 1 ̅ 1 − 2 ̅ 2 = (1 − 1 )̅ 1 + (2 − 2 )̅ 2 => линейно зависимы, а это противоречит определению базиса.

3. Доказать свойство линейности скалярного произведения.

Совместно с умножением на число операция скалярного умножения ассоциативна: (λ̅ )̅ =

λ(̅ ̅ ).

Скалярное умножение и сложение векторов связаны свойством дистрибутивности: (̅ +̅ )с̅

= ̅ с̅+ ̅ с̅.

Что и требовалось доказать.

4. Вывести формулу для вычисления скалярного произведения векторов, заданных в ортонормированном базисе.

Вывод формулы для вычисления скалярного произведения векторов, заданных в ортонормированном базисе.

Пусть векторы ̅ и̅ из3 заданы своими координатами в ортонормированном базисе,̅ ,̅ ̅ :̅ = { ; ; },̅ = { ; ; }. Это означает, что имеются разложения̅ =̅ +̅ +̅ ,

̅ =̅ +̅ +̅ . Используя их и свойства скалярного произведения, вычислим

̅̅ = (̅+ ̅+̅ )(̅+ ̅+̅ )

= ̅ ̅+ ̅ ̅+ ̅̅ + ̅ ̅+ ̅ ̅+ ̅̅ +̅ ̅+̅ ̅ +̅ ̅ =2 ̅+2 ̅+̅ 2 = + + .

Окончательный ответ получен с учетом того, что ортонормированность базиса,̅ ,̅

̅ означает выполнение равенств̅̅ = ̅ ̅ = ̅ ̅ = 0, 2 ̅= 2 ̅= 2 = 1 . Таким образом,

̅ ̅ = + +

5. Вывести формулу для вычисления векторного произведения векторов, заданных в правом ортонормированном базисе.

Вывод формулы для вычисления векторного произведения векторов, заданных в ортонормированном базисе.

Рассмотрим два вектора ̅

и, заданных своими координатами в правом ортонормированном базисе

̅ = {

}. Тогда имеют место разложения этих векторов ̅ =̅ +̅

, ̅, ̅:

= ̅ +̅ +

Исходя из этих

представлений

алгебраических

векторного умножения,

получаем

= ̅× ̅+ ̅× ̅+ ̅× +

̅× ̅+ ̅× ̅+ ̅× +

̅ ̅

× ̅+ × ̅+

× = (

)̅+ (

)̅+ (

Чтобы упростить полученную формулу, заметим, что она похожа на формулу разложения определителя третьего порядка по 1-й строке, только вместо числовых коэффициентов стоят векторы. Поэтому можно записать эту формулу как определитель, который вычисляется по обычным правилам. Две строки этого определителя будут состоять из чисел, а одна - из векторов. Итак, формулу вычисления векторного произведения в правом ортонормированном базисе,̅ ,̅ ̅ можно записать в виде:

6. Доказать свойство линейности смешанного произведения.

Используя свойства смешанного произведения, можно доказать линейность векторного

произведения по первому множителю:

(̅ + ̅ , ̅)= (̅,)̅+ (̅ ,)̅

Для этого найдем скалярное произведение вектора в левой части равенства и единичного векторастандартного базиса. Учитывая линейность смешанного произведения по второму множителю,

получаем

т.е. абсцисса вектора, стоящего в левой части доказываемого равенства равна абсциссе вектора в правой его части. Аналогично доказываем, что ординаты, а также и аппликаты, векторов в обеих частях равенства соответственно равны. Следовательно, это равные векторы, так как их координаты относительно стандартного базиса совпадают.

7. Вывести формулу для вычисления смешанного произведения трёх векторов в правом ортонормированном базисе.

Вывод формулы для вычисления смешанного произведения трёх векторов в правом ортонормированном базисе.

Пусть векторы a, b, c заданы своими координатами в правом ортонормированном базисе: ̅ = { ;

}, = { ; ; }, ̅с = { ; ; }. Чтобы найти их смешанное произведение,

воспользуемся формулами для вычисления скалярного и векторного произведений:

̅̅= ̅(× ̅)= ̅ (|

8. Вывести формулу для расстояния от точки до плоскости, заданной общим уравнением.

Вывод формулы для расстояния от точки до плоскости, заданной общим уравнением.

Рассмотрим в пространстве некоторую плоскость π и произвольную точку 0 . Выберем

для плоскости единичный нормальный вектор n с началом в некоторой точке 1 π ,и пусть ρ(0 ,

так как | ̅ | = 1.

Если плоскость π задана в прямоугольной системе координат своим общим уравнением

Ax + By + Cz + D = 0, то ее нормальным вектором является вектор с координатами {A; B; C}.

Пусть (0 , 0 , 0 ) и(1 , 1 , 1 ) - координаты точек0

и 1 . Тогда выполнено равенство

A 1 +B1 +C1 +D = 0, так как точка M1 принадлежит плоскости, и можно найти координаты

̅̅̅̅̅̅̅̅

̅̅̅̅̅̅̅̅

̅̅̅̅̅̅̅̅

Вектора 1 0 :

1 0 = (0 − 1 ; 0 − 1 ; 0 − 1 ) . Записывая скалярное произведение̅ 1 0

координатной форме и преобразуя (5.8), получаем

| (0 −1 ) + (0 −1 ) + (0 −1 )|

| 0 +0 +0 − (1 +1 +1 )|

2 + 2+ 2

2 + 2+ 2

= |0 +0 +0 + | √2 +2 +2

поскольку 1 + 1 + 1 = − . Итак, чтобы вычислить расстояние от точки до плоскости нужно подставить координаты точки в общее уравнение плоскости, а затем абсолютную величину результата разделить на нормирующий множитель, равный длине соответствующего нормального вектора.

9. Вывести формулу для расстояния от точки до прямой в пространстве.

Вывод формулы для расстояния от точки до прямой в пространстве.

Расстояние от точки 1 (1 , 1 , 1 ) до прямой L, заданной каноническими уравнениями L:− 0 = − 0 = − 0 , может быть вычислено при помощи векторного произведения. Действительно,

канонические уравнения прямой дают нам точку 0 (0 , 0 , 0 ) на прямой

и направляющий вектор ̅ = {l; m; n} этой прямой. Построим параллелограмм на векторах̅ и̅̅̅̅̅̅̅̅ .

Тогда расстояние от точки 1 до прямой L будет равно высоте h параллелограмма (рис. 6.6).

Значит, нужное расстояние может быть вычислено по формуле

̅̅̅̅̅̅̅̅

(1 ,) =

| 0 1 × |

10. Вывести формулу для расстояния между скрещивающимися прямыми.

Вывод формулы для расстояния между скрещивающимися прямыми.

Расстояние между скрещивающимися прямыми можно находить, используя смешанное

произведение. Пусть прямые 1

и 2

каноническими уравнениями. Так как они

̅̅̅̅̅̅̅̅

скрещиваются, их направляющие векторы 1 ,2 и вектор1 2 , соединяющий точки на прямых, некомпланарны. Поэтому на них можно построить параллелепипед (рис. 6.7).

Тогда расстояние между прямыми равно высоте h этого параллелепипеда. В свою очередь, высоту параллелепипеда можно вычислить как отношение объема параллелепипеда к площади его основания. Объем параллелепипеда равен модулю смешанного произведения трех указанных векторов, а площадь параллелограмма в основании параллелепипеда равна модулю векторного произведения направляющих векторов прямых. В результате получаем формулу для расстояния

(1 , 2 ) между прямыми:

̅ ̅̅̅ ̅̅̅̅̅̅̅̅

(1 ,2 ) =

| 1 2

1 2|

1. Общие положения

1.1. С целью поддержания деловой репутации и обеспечения выполнения норм федерального законодательства ФГАУ ГНИИ ИТТ «Информика» (далее – Компания) считает важнейшей задачей обеспечение легитимности обработки и безопасности персональных данных субъектов в бизнес-процессах Компании.

1.2. Для решения данной задачи в Компании введена, функционирует и проходит периодический пересмотр (контроль) система защиты персональных данных.

1.3. Обработка персональных данных в Компании основана на следующих принципах:

Законности целей и способов обработки персональных данных и добросовестности;

Соответствия целей обработки персональных данных целям, заранее определенным и заявленным при сборе персональных данных, а также полномочиям Компании;

Соответствия объема и характера обрабатываемых персональных данных, способов обработки персональных данных целям обработки персональных данных;

Достоверности персональных данных, их актуальности и достаточности для целей обработки, недопустимости обработки избыточных по отношению к целям сбора персональных данных;

Легитимности организационных и технических мер по обеспечению безопасности персональных данных;

Непрерывности повышения уровня знаний работников Компании в сфере обеспечения безопасности персональных данных при их обработке;

Стремления к постоянному совершенствованию системы защиты персональных данных.

2. Цели обработки персональных данных

2.1. В соответствии с принципами обработки персональных данных, в Компании определены состав и цели обработки.

Цели обработки персональных данных:

Заключение, сопровождение, изменение, расторжение трудовых договоров, которые являются основанием для возникновения или прекращения трудовых отношений между Компанией и ее работниками;

Предоставление портала, сервисов личного кабинета для учеников, родителей и учителей;

Хранение результатов обучения;

Исполнение обязательств, предусмотренных федеральным законодательством и иными нормативными правовыми актами;

3. Правила обработки персональных данных

3.1. В Компании осуществляется обработка только тех персональных данных, которые представлены в утвержденном Перечне персональных данных, обрабатываемых в ФГАУ ГНИИ ИТТ «Информика»

3.2. В Компании не допускается обработка следующих категорий персональных данных:

Расовая принадлежность;

Политические взгляды;

Философские убеждения;

О состоянии здоровья;

Состояние интимной жизни;

Национальная принадлежность;

Религиозные убеждения.

3.3. В Компании не обрабатываются биометрические персональные данные (сведения, которые характеризуют физиологические и биологические особенности человека, на основании которых можно установить его личность).

3.4. В Компании не осуществляется трансграничная передача персональных данных (передача персональных данных на территорию иностранного государства органу власти иностранного государства, иностранному физическому лицу или иностранному юридическому лицу).

3.5. В Компании запрещено принятие решений относительно субъектов персональных данных на основании исключительно автоматизированной обработки их персональных данных.

3.6. В Компании не осуществляется обработка данных о судимости субъектов.

3.7. Компания не размещает персональные данные субъекта в общедоступных источниках без его предварительного согласия.

4. Реализованные требования по обеспечению безопасности персональных данных

4.1. С целью обеспечения безопасности персональных данных при их обработке в Компании реализуются требования следующих нормативных документов РФ в области обработки и обеспечения безопасности персональных данных:

Федеральный закон от 27.07.2006 г. № 152-ФЗ «О персональных данных»;

Постановление Правительства Российской Федерации от 1 ноября 2012 г. N 1119 "Об утверждении требований к защите персональных данных при их обработке в информационных системах персональных данных";

Постановление Правительства Российской Федерации от 15.09.2008 г. №687 «Об утверждении Положения об особенностях обработки персональных данных, осуществляемой без использования средств автоматизации»;

Приказ ФСТЭК России от 18.02.2013 N 21 "Об утверждении Состава и содержания организационных и технических мер по обеспечению безопасности персональных данных при их обработке в информационных системах персональных данных";

Базовая модель угроз безопасности персональных данных при их обработке в информационных системах персональных данных (утверждена заместителем директора ФСТЭК России 15.02.2008 г.);

Методика определения актуальных угроз безопасности персональных данных при их обработке в информационных системах персональных данных (утверждена заместителем директора ФСТЭК России 14.02.2008 г.).

4.2. Компания проводит оценку вреда, который может быть причинен субъектам персональных данных и определяет угрозы безопасности персональных данных. В соответствии с выявленными актуальными угрозами Компания применяет необходимые и достаточные организационные и технические меры, включающие в себя использование средств защиты информации, обнаружение фактов несанкционированного доступа, восстановление персональных данных, установление правил доступа к персональным данным, а также контроль и оценку эффективности применяемых мер.

4.3. В Компании назначены лица, ответственные за организацию обработки и обеспечения безопасности персональных данных.

4.4. Руководство Компании осознает необходимость и заинтересовано в обеспечении должного как с точки зрения требований нормативных документов РФ, так и обоснованного с точки зрения оценки рисков для бизнеса уровня безопасности персональных данных, обрабатываемых в рамках выполнения основной деятельности Компании.

Вектором называется направленный отрезок прямой евклидова пространства, у которого один конец (точка A) называется началом вектора, а другой конец (точка B) концом вектора (Рис. 1). Векторы обозначаются:

Если начало и конец вектора совпадают, то вектор называется нулевым вектором и обозначается 0 .

Пример. Пусть в двухмерном пространстве начало вектора имеет координаты A (12,6) , а конец вектора - координаты B (12,6). Тогда вектор является нулевым вектором.

Длина отрезка AB называется модулем (длиной , нормой ) вектора и обозначается |a |. Вектор длины, равной единице, называется единичным вектором . Кроме модуля вектор характеризуется направлением: вектор имеет направление от A к B . Вектор называется вектором, противоположным вектору .

Два вектора называются коллинеарными , если они лежат на одной прямой или на параллельных прямых. На рисунке Рис. 3 красные векторы коллинеарны, т.к. они лажат на одной прямой, а синие векторы коллинеарны, т.к. они лежат на параллельных прямых. Два коллинеарных вектора называются одинаково направленными , если их концы лежат по одну сторону от прямой, соединяющей их начала. Два коллинеарных вектора называются противоположно направленными , если их концы лежат по разные стороны от прямой, соединяющей их начала. Если два коллинеарных вектора лежат на одной прямой, то они называются одинаково направленными, если один из лучей, образованным одним вектором полностью содержит луч, образованным другим вектором. В противном случае векторы называются противоположно направленными. На рисунке Рис.3 синие векторы одинаково направлены, а красные векторы противоположно направлены.

Два вектора называются равными если они имеют равные модули и одинаково направлены. На рисунке Рис.2 векторы равны т.к. их модули равны и имеют одинаковое направление.

Векторы называются компланарными , если они лежат на одной плоскости или в параллельных плоскостях.

В n мерном векторном пространстве рассмотрим множество всех векторов, начальная точка которых совпадает с началом координат. Тогда вектор можно записать в следующем виде:

(1)

где x 1 , x 2 , ..., x n координаты конечной точки вектора x .

Вектор, записанный в виде (1) называется вектор-строкой , а вектор, записанный в виде

(2)

называется вектор-столбцом .

Число n называется размерностью (порядком ) вектора. Если то вектор называется нулевым вектором (т.к. начальная точка вектора ). Два вектора x и y равны тогда и только тогда, когда равны их соответствующие элементы.

Страница 1 из 2

Вопрос 1. Что такое вектор? Как обозначаются векторы?
Ответ. Вектором мы будем называть направленный отрезок (рис. 211). Направление вектора определяется указанием его начала и конца. На чертеже направление вектора отмечается стрелкой. Для обозначения векторов будем пользоваться строчными латинскими буквами a, b, c, ... . Можно также обозначить вектор указанием его начала и конца. При этом начало вектора ставится на первом месте. Вместо слова "вектор" над буквенным обозначением вектора иногда ставится стрелка или черта. Вектор на рисунке 211 можно обозначить так:

\(\overline{a}\), \(\overrightarrow{a}\) или \(\overline{AB}\), \(\overrightarrow{AB}\).

Вопрос 2. Какие векторы называются одинаково направленными (противоположно направленными)?
Ответ. Векторы \(\overline{AB}\) и \(\overline{CD}\) называются одинаково направленными, если полупрямые AB и CD одинаково направлены.
Векторы \(\overline{AB}\) и \(\overline{CD}\) называются противоположно направленными, если полупрямые AB и CD противоположно направлены.
На рисунке 212 векторы \(\overline{a}\) и \(\overline{b}\) одинаково направлены, а векторы \(\overline{a}\) и \(\overline{c}\) противоположно направлены.

Вопрос 3. Что такое абсолютная величина вектора?
Ответ. Абсолютной величиной (или модулем) вектора называется длина отрезка, изображающего вектор. Абсолютная величина вектора \(\overline{a}\) обозначается |\(\overline{a}\)|.

Вопрос 4. Что такое нулевой вектор?
Ответ. Начало вектора может совпадать с его концом. Такой вектор будем называть нулевым вектором. Нулевой вектор обозначается нулём с чёрточкой (\(\overline{0}\)). О направлении нулевого вектора не говорят. Абсолютная величина нулевого вектора считается равной нулю.

Вопрос 5. Какие векторы называются равными?
Ответ. Два вектора называются равными, если они совмещаются параллельным переносом. Это означает, что существует параллельный перенос, который переводит начало и конец одного вектора соответственно в начало и конец другого вектора.

Вопрос 6. Докажите, что равные векторы одинаково направлены и равны по абсолютной величине. И обратно: одинаково направленные векторы, равные по абсолютной величине, равны.
Ответ. При параллельном переносе вектор сохраняет своё направление, а также свою абсолютную величину. Значит, равные векторы направлены одинаково и равны по абсолютной величине.
Пусть \(\overline{AB}\) и \(\overline{CD}\) – одинаково направленные векторы, равные по абсолютной величине (рис. 213). Параллельный перенос, переводящий точку C в точку A, совмещает полупрямую CD с полупрямой AB, так как они одинаково направлены. А так как отрезки AB и CD равны, то при этом точка D совмещается с точкой B, т.е. параллельный перенос переводит вектор \(\overline{CD}\) в вектор \(\overline{AB}\). Значит, векторы \(\overline{AB}\) и \(\overline{CD}\) равны, что и требовалось доказать.

Вопрос 7. Докажите, что от любой точки можно отложить вектор, равный данному вектору, и только один.
Ответ. Пусть CD – прямая, а вектор \(\overline{CD}\) – часть прямой CD. Пусть AB – прямая, в которую переходит прямая CD при параллельном переносе, \(\overline{AB}\) – вектор, в который при параллельном переносе переходит вектор \(\overline{CD}\), а значит, векторы \(\overline{AB}\) и \(\overline{CD}\) равны, а прямые AB и CD параллельны (см. рис. 213). Как мы знаем, через точку не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной (аксиома параллельных прямых). Значит, через точку A можно провести одну прямую, параллельную прямой CD. Так как вектор \(\overline{AB}\) – часть прямой AB, то через точку A можно провести один вектор \(\overline{AB}\), равный вектору \(\overline{CD}\).

Вопрос 8. Что такое координаты вектора? Чему равна абсолютная величина вектора с координатами a 1 , a 2 ?
Ответ. Пусть вектор \(\overline{a}\) имеет началом точку A 1 (x 1 ; y 1), а концом точку A 2 (x 2 ; y 2). Координатами вектора \(\overline{a}\) будем называть числа a 1 = x 2 - x 1 , a 2 = y 2 - y 1 . Координаты вектора будем ставить рядом с буквенным обозначением вектора, в данном случае \(\overline{a}\) (a 1 ; a 2) или просто \((\overline{a 1 ; a 2 })\). Координаты нулевого вектора равны нулю.
Из формулы, выражающей расстояние между двумя точками через их координаты, следует, что абсолютная величина вектора с координатами a 1 , a 2 равна \(\sqrt{a^2 1 + a^2 2 }\).

Вопрос 9. Докажите, что равные векторы имеют соответственно равные координаты, а векторы с соответственно равными координатами равны.
Ответ. Пусть A 1 (x 1 ; y 1) и A 2 (x 2 ; y 2) – начало и конец вектора \(\overline{a}\). Так как равный ему вектор \(\overline{a"}\) получается из вектора \(\overline{a}\) параллельным переносом, то его началом и концом будут соответственно A" 1 (x 1 + c; y 1 + d), A" 2 (x 2 + c; y 2 + d). Отсюда видно, что оба вектора \(\overline{a}\) и \(\overline{a"}\) имеют одни и те же координаты: x 2 - x 1 , y 2 - y 1 .
Докажем теперь обратное утверждение. Пусть соответствующие координаты векторов \(\overline{A 1 A 2 }\) и \(\overline{A" 1 A" 2 }\) равны. Докажем, что векторы равны.
Пусть x" 1 и y" 1 - координаты точки A" 1 , а x" 2 , y" 2 - координаты точки A" 2 . По условию теоремы x 2 - x 1 = x" 2 - x" 1 , y 2 - y 1 = y" 2 - y" 1 . Отсюда x" 2 = x 2 + x" 1 - x 1 , y" 2 = y 2 + y" 1 - y 1 . Параллельный перенос, заданный формулами

x" = x + x" 1 - x 1 , y" = y + y" 1 - y 1 ,

переводит точку A 1 в точку A" 1 , а точку A 2 в точку A" 2 , т.е. векторы \(\overline{A 1 A 2 }\) и \(\overline{A" 1 A" 2 }\) равны, что и требовалось доказать.

Вопрос 10. Дайте определение суммы векторов.
Ответ. Суммой векторов \(\overline{a}\) и \(\overline{b}\) с координатами a 1 , a 2 и b 1 , b 2 называется вектор \(\overline{c}\) с координатами a 1 + b 1 , a 2 + b a 2 , т.е.

\(\overline{a} (a 1 ; a 2) + \overline{b}(b 1 ; b 2) = \overline{c} (a 1 + b 1 ; a 2 + b 2)\).