Порошковое пожаротушение. Огнетушащий порошок и способ его получения Упаковка, транспортировка и хранение

Мы предлагаем порошок огнетушащий ВЕКСОН-АВС 25.

Область применения

  • Тушение пожаров классов А, В, С.
  • Тушение электроустановок под напряжением до 1000 В.

Огнетушащий порошок ВЕКСОН-АВС представляет собой дисперсную смесь карбонатов, фосфатов, неорганических солей, высокодисперсного диоксида кремния и добавки для текучести нерастворимых в воде минералов и их смесей.

В качестве активного вещества огнетушащий порошок может применяться как в помещениях, так и на открытом воздухе, в переносных и передвижных порошковых огнетушителях, в модулях и автоматических установках порошкового пожаротушения и пожарных автомобилях комбинированного и порошкового пожаротушения. Может использоваться во всех климатических зонах при температуре окружающей среды от — 50С до + 50 °С.

ВЕКСОН-АВС 25 — отличается высокой способностью к водоотталкиванию и низким показателем слеживаемости.

Гарантийный срок хранения — 10 лет.

Упаковка

  • Бумажные мешки с полиэтиленовыми вкладышами, масса 30 кг.
  • Полиэтиленовые мешки типа «БИГ-БЭГ», масса 800 кг

Порошки изготовлены по ГОСТ Р 53280.4-2009Б , соответствуют ТУ 2149-028-10968286-97, изм 8. Имеют сертификат соответствия и свидетельство о типовом одобрении Российского морского регистра судоходства.

Как заказать

Посмотреть цены на огнетушащие порошки Вы можете в прайс-листе . Чтобы заказать огнетушашие порошки оптом от производителя, отправьте заявку по телефону, электронной почте или через онлайн-оператора. Наши менеджеры свяжутся с Вами для уточнения условий оплаты и доставки.

Доставка и оплата

Доставка заказов осуществляется по Москве, Московской области и в регионы России. Способ и условия доставки согласовываются для каждого заказа индивидуально. Тарифы на доставку Вы можете посмотреть в прайс-листе и разделе «Доставка ». Позвоните, чтобы уточнить способ оплаты заказа у менеджеров.

Порошковые составы представляют собой мелкодисперсные минеральные соли, обработанные специальными добавками. Такие составы подразделяют на порошки общего и специального назначения.

Порошки общего назначения (тип АВСЕ и тип ВСЕ) могут соответственно тушить жидкие горючие, твердые углеродсодержащие материалы, горючие газы, а также электрооборудование, находящееся под напряжением до 1000 В.

Огнетушащие порошки общего назначения обеспечивают тушение пожара в основном за счет прерывания цепи химической реакции горения и экранирования теплоты излучения. Но нужно помнить, что использование этих порошков позволяет только сбить пламя. Для того, чтобы предотвратить возможность повторных возгораний, необходимо далее использовать воду или пену.

Порошки специального назначения (тип D) применяют для тушения горящих металлов, металлоорганических соединений и гидридов металлов (при пожарах класса D). Тушение осуществляется путем изоляции поверхности горящего материала от доступа кислорода, содержащегося в воздухе.

Существует четыре типа огнетушащих порошков специального назначения, в зависимости от их химического состава.

Следует помнить, что ни один из огнетушащих порошков не обладает охлаждающим эффектом.

При применении для тушения огнетушащих порошков необходимо учитывать следующие сведения:

1). При выпуске огнетушащего порошка в большом количестве он может оказать вредное влияние на находящихся поблизости людей.

2). Огнетушащие порошки не тушат пожаров, связанных с горением материалов, в состав которых входит кислород (окислители).

3). Огнетушащий порошок может повредить электро и электронное оборудование.

4). При тушении горючих металлов, таких как магний, калий, натрий и их сплавов, порошок общего назначения не дает огнетушащего эффекта и даже может ухудшить ситуацию.

Совместимость огнетушащих порошков с другими огнетушащими веществами. Любой огнетушащий порошок можно использовать для тушения пожаров совместно с другими огнетушащими порошками.

Многие виды огнетушащей пены разрушаются под воздействием огнетушащего порошка. На судах, оборудованных системами пенотушения, можно использовать только те огнетушащие порошки, которые совместимы с пеной

Безопасность при применении огнетушащих порошков. Огнетушащие порошки считаются нетоксичными, но при вдыхании они могут вызвать раздражение дыхательных путей и глаз. Поэтому, так же, как и в случае углекислотного тушения, в помещениях, которые могут заполняться огнетушащим порошком, необходимо предусмотреть наличие предупредительных сигналов. Кроме того, если членам экипажа нужно войти в помещение, куда был подан порошок, до окончания проветривания, они должны обязательно воспользоваться дыхательными аппаратами и предохранительными тросами.

Применение огнетушащих порошков очень эффективно для тушения пожаров газа. Но воспламенившиеся газы не следует тушить до тех пор, пока не будет перекрыт их источник

Показатель качества Название, единица измерения, предельное значение
Огнетушащая способность Расход порошка, кг/м 2 , на модельный очаг Определение расхода: для модельного очага 1А пожара класса А (без повторного воспламенения в течение 10 мин); для модельного очага 55 В пожара класса В. Этот порошок должен обеспечивать тушение очага пожара класса С
Влажность Массовая доля влаги, %, не более 0,35 Определение потери массы образца после сушки при заданной температуре до постоянной массы (термический или эксикаторный метод)
Склонность к влагопоглощению и слеживанию Увеличение массы порошка, %, не более 3; образование комков, %, не более 2 Определение увеличения массы образца при выдерживании над насыщенным раствором 80%-ной влажности (температура (20 ± 3) °С) в течение 24 ч (эксикаторный метод)
Текучесть Массовый расход в заданных условиях испытаний, кг/с, не менее 0,28; остаток порошка, %, не более 10 Измерение массового расхода и остатка порошка в испытательном приборе при его истечении под давлением газа
Способность к водоотталкиванию Впитывание капель порошком в заданных условиях Наблюдение за впитыванием трех капель воды в течение 120 мин
Плотность Кажущаяся, кг/м 3 , не менее 700; при уплотнении, кг/м 3 , не менее 1000 Определение отношения массы свободно засыпанного и уплотненного вибрацией в течение заданного времени порошка к заданному объему
Гранулометрический состав Количество порошка (фракции) на сите с сетками разных размеров Ситовой механический (или вручную) анализ на металлических ситах (может выполняться на предприятии, выпускающем продукцию)
Химический состав Основной компонент должен составлять не менее (75 ± 5) % Химический анализ (выполняется на предприятии, выпускающем продукцию)
Пробивное напряжение (для порошков, предназначенных для тушения оборудования, находящегося под напряжением) Напряжение не менее 5 кВ Измерение переменного напряжения частотой 50 Гц на электродах ячейки, заполненной уплотненным порошком, при котором наступает пробой искрового промежутка заданной величины
Срок хранения Не, менее 5 лет Определение продолжительности нахождения порошка в заводской упаковке при условиях, установленных нормативными требованиями при сохранении огнетушащей способности и эксплуатационных свойств

Наряду с показателями, представленными в таблице, для порошков общего назначения и в зависимости от условий их применения могут устанавливаться и дру­гие дополнительные показатели, представленные ниже.

Показатель качества Название, единица измерения Краткая характеристика метода
Транспортабельность Массовая концентрация порошка в рабочем газе, кг/кг, кг/м 3 Измерение массы порошка в массе рабочего газа
Дальность выброса Массовый расход порошка по длине струи, кг/м Определение количества порошка при заданных условиях выброса и его распределение по длине струи
Термостойкость Сохранение исходных характеристик эксплуатационных свойств порошка в диапазоне температур от -50 до +50 °С Термостатирование порошка в заданном диапазоне температур с последующим определением эксплуатационных свойств (текучесть, влагопоглощение и др.)
Коррозионная активность Изменение массы контрольной пластины из металла при контакте с порошком, г/мм 2 в год Определение разрушающего действия порошка на изделия из металла, пластмассы (высушенным и влажным) весовым методом
Сыпучесть Объемный расход, м 3 /с, минимальный диаметр, мм Расчет объема порошка, свободно вытекающего из конусообразного сосуда в единицу времени (метод «воронки») и зависания порошка, вытекающего из конусообразного сосуда (метод «диаметра»)
Виброустойчивость Сохранение порошком эксплуатационных свойств после вибрационного воздействия Определение эксплуатационных и огнетушащих свойств порошка после вибрации в течение 1 ч

Показатели качества огнетушащих порошков специального назначения

По показателям качества огнетушащие порошки должны соответствовать требованиям, указанным в таблице.

Показатели Значение показателя для порошка класса
D1 D2 D3 (ТИБА) D1 (ТИБА)
универсальный целевой универсальный целевой универсальный целевой
Кажущаяся плотность неуплотненного порошка, кг/м 3 , не менее 700 700 700 500 700 450
Массовая доля, %, не более 0,35 0,35 0,35 0,40 0,35 0,50
Склонность к влагопоглощению, %, не более 2,50 2,00 2,50 3,00 2,50 0,15
Текучесть при массовой доле остатка в огнетушителе, %, не более 15 15 15 18 15 21
Текучесть, кг/с, не менее 0,28 0,28 0,28 0,20 0,28 0,15
Огнетушащая способность, кг/м 2 , не более 20 12 50 10 50 20
Средний срок сохраняемости, лет, не менее 5 5 5 5 5 5

Примечания:

  1. Порошок универсальный предназначен для тушения металлов (их соединений), а также горючих жидкостей, газов, электроустановок под напряжением 1000 В.
  2. Порошок целевой предназначен только для тушения металлов (их соединений).
  3. Текучесть, кг/с, определяется по расходу порошка при истечении его из испытательного прибора под давлением рабочего газа.
  4. Текучесть при массовой доле остатка в испытательном приборе (огнетушителе), %, определяется по остатку порошка в нем после испытаний.
  5. Огнетушащая способность определяется по массе порошка на единицу открытой поверхности модельного очага пожара. В качестве горючего используются: порошок магния фрезерованный с содержанием основного компонента 98,5 % – класс пожара B1; металлический натрий с содержанием основного компонента 99,6 % – класс пожара D2; триизобутилалюминий (ТИБА) или его раствор в толуоле (содержание ТИБА – 40 % об. – класс пожара DЗ).

Огнетушащая способность (эффективность) порошка

Огнетушащие свойства порошка, согласно ГОСТ 53280, прежде всего характеризуются таким показателем, как огнетушащая способность. Этот государственный стандарт определяет ее количественным параметром веществ, применяемых методов, устройств, используемых для таких целей.

В нормах, например, в ГОСТ 53286 встречается и несколько иное, более конкретное определение огнетушащей способности порошков как возможности ликвидации модельных очагов пожара по площади и/или в объеме.

Для справки: модельным очагом считается пожар установленной, определенной формы, размеров.

Подробнее отдельная статья:

Порошки, что предназначены для ликвидации пожаров класса А – должны тушить модельный очаг 1А; для классов В, С – очаг 55 В при расходе не больше 1 кг/м 3 .

Выбор конкретного вида, типа порошка для ликвидации пожаров по прямо зависит от его огнетушащей способности:

  • Пожар класса А – огнетушащий порошок типа АВСЕ.
  • В, С – АВСЕ и ВСЕ.
  • D – порошок спецназначения типа D.
  • Е – АВСЕ.

Для обеспечения эффективности тушения твердых материалов, легких, щелочных металлов, их соединений, в т.ч. органических, используют порошки, предназначенные для спокойной подачи на горящую поверхность; для ликвидации горения жидкостей, газов – порошки объемного тушения.

К важным характеристикам, касающихся огнетушащей способности, эффективности использования порошков в устройствах, установках, системах локализации, ликвидации очагов пламени; при длительном хранении, в т.ч. как запаса для , модулей пожаротушения, восполнения объема в установках также относят:

  • Текучесть, что обеспечивает расход массы порошка через отверстия элементов оборудования пожаротушения под давлением выталкивающего агента в единицу времени. Это параметр не должен быть меньше 0,28 кг/с, а остаточная масса внутри устройства – огнетушителя, модуля, расходной емкости порошковой установки АУПТ не должна превысить 10% от начального веса огнетушащего вещества.
  • Пробивное диэлектрическое напряжение, которым считается минимальное напряжение электрического тока, что приводит к пробою через диэлектрик; в данном случае, подаваемый на тушение порошок. Для порошков, предназначенных для подавления пожаров класса Е – в электроустановках, оно должно составлять не меньше 5 кВ.
  • Кажущаяся плотность. Она определяется отношением массы порошка к объему, что он занимает. Этот показатель должен быть для неуплотненного порошка – не меньше 700 кг/м 3 , для уплотненного – не менее 1 тыс. кг/м 3 .
  • Способность к отталкиванию воды определяют, как отсутствие впитывания капель воды в течение 2 часов.
  • Склонность к поглощению влаги при длительных неблагоприятных условиях хранения – прирост массы порошка не больше 3 %.
  • Массовую долю влаги, которая не должна превышать 0,35 %.
  • Способность к слеживанию. Так называют физический процесс, что приводит к слипанию порошка в комки или сплошной массив, под любым внешним воздействием, включая перепады температуры, влажность воздушной среды. Общий вес комков, конгломератов порошка не должна быть больше 2 % от всей массы.
  • Срок сохранности, определяемый календарной продолжительностью хранения в заводской упаковке без изменения параметров качества, что указаны в нормах, сопроводительной технической документации компании производителя; но не меньше 5 лет.

На огнетушащую способность смесей общего назначения сильно влияет размер частиц. Чем тоньше помол огнетушащего вещества, тем выше его эффективность, для специальных порошков такой зависимости не существует.

При , снаряженных порошком, показателем огнетушащей способности принимают его массу, требуемую для подавления единицы S поверхности, что горит открытым пламенем; или всего очага пожара, что принят нормами модельным.

Говоря в общем об огнетушащей способности, следует отметить, что порошки являются универсальным эффективным , а для класса D – единственным; что делает в ряде случаев их использование незаменимым не только в цехах промышленных производств, но и на объектах инженерной инфраструктуры, складского, общественного назначения, транспорте.

Недостатки и преимущества огнетушащих порошков

Несмотря на универсальность, востребованность этого вида огнетушащих веществ при его использовании был выявлен ряд недостатков:

  • Невозможность использования порошковых огнетушителей, автоматических установок, автономных модулей для подавления возгораний некоторых видов дорогостоящей электронной аппаратуры, электрооборудования, которые могут выйти из строя, быть серьезно повреждены из-за попадания мельчайших частиц огнегасящего агента внутрь корпусов, шкафов, что вызывает короткое замыкание контактных элементов, изделий, устройств.
  • Порошковые системы тушения требуют предварительной эвакуации сменного персонала, посетителей, зрителей, покупателей из защищаемых помещений, что приводит к удорожанию комплекта оборудования, включения в него элементов СОУЭ ; к организационным сложностям по безопасному выводу людей из зданий.
  • Порошковые переносные, передвижные огнетушители следует использовать на открытом воздухе, например, для тушения моторных отсеков различных транспортных средств, в цехах промышленных предприятий, складских комплексах; не рекомендовано использовать их для защиты помещений с объемом меньше 40 м 3 из-за резкого ухудшения видимости, негативного воздействия для дыхания людей.
  • Огнетушащие порошки в отличие от воды, пены, хладонов, углекислоты, используемых в , и в аналогичных им системах АУПТ, не охлаждают строительные конструкции зданий, корпуса технологического оборудования, нагретые в ходе процесса горения, развития очага пожара, что часто приводит к повторным возгораниям.
  • Это требует дополнительного вмешательства сотрудников пожарных подразделений, членов ДПД для окончательной ликвидации огня; или создания, установки , последовательно использующих огнегасящие порошки, газы, пену, тонкораспыленную воду.
  • Использование порошкового пожаротушения исключает использование систем дымоудаления, что затрудняет эвакуацию людей из защищаемых помещений.

В целом проблемы при использовании порошкового способа тушения пожара: практически полная потеря видимости, следовательно, невозможность нахождения ; трудности с дыханием в помещениях, наполненных взвесью мельчайших частиц огнетушащего вещества в воздухе; неизбежная паника.

Все это нормативно исключает использование порошковых АУПТ на объектах – в помещениях, зданиях, их , из которых невозможна эвакуация до автоматического пуска установок; или в них находится по штатному расписанию, расчетным данным больше 50 человек.

Тем не менее эти минусы не умаляют преимущества использования огнетушащих порошков:

  • Возможность тушения всех классов пожаров, что невозможно при использовании других огнегасящих веществ.
  • Использование порошковых устройств в неотапливаемых помещениях, на различных транспортных средствах в условиях резких перепадов температуры воздуха, что действительно важно в условиях жесткого климата на большей части территории России.
  • Большой срок эксплуатации порошковых устройств до перезарядки, что сокращает расходы заказчиков, покупателей такого вида оборудования.

Баланс плюсов и минусов огнетушащих порошков при их правильном использовании на практике явно склоняется в пользу преимуществ их применения.

Состав огнетушащего порошка

Он состоит из следующих компонентов: негорючей основы, составляющей до 95% массы; добавок – антиоксидантов, гидрофобизаторов, депрессантов, других целевых добавок, используемых в огнетушащих порошках общего, спецназначения.

Для негорючей основы используют тонкомолотые бикарбонаты, хлориды щелочных металлов, фосфорно-аммонийные соли, сульфаты, окись алюминия; силикагель с наполнением его внутренней структуры хладонами.

Согласно ГОСТ 53280-2009 минеральные компоненты, специальные добавки, входящие в рецептуру огнетушащих порошков, должны соответствовать с отклонениями не больше 5–10% от массового состава по техническим условиям компаний производителей. При этом не допускается совместное использование в одном составе бикарбонатов, фосфорно-аммониевых солей; необходимо указывать содержание хлоридов при их использовании в рецептуре.

Все производимые в России, поставляемые из-за рубежа огнетушащие порошки подлежат проведению сертификационных испытаний для установки их соответствия нормам, утвержденным техническим условиям производителя.

Утилизация огнетушащих порошков

В которых в качестве огнегасящего вещества используется порошок, составляют:

  • При нормальных условиях содержания в теплых, а также неотапливаемых помещениях – раз в 5 лет.
  • При эксплуатации на различных транспортных средствах – в кабинах, багажниках, кузовах легковых, грузовых автомашин; специальной дорожной, погрузочной техники; на подвижном железнодорожном составе; речных, морских судах – раз в два года.

Снаряженных огнетушащим порошком, имеет свою специфику. Их проводят в соответствии с требованиями СП 9.13130-2009, что подразумевает не сбрасывание списанного огнетушащего порошка на свалку, сброса, смыва в канализацию; а использование вторсырьем для производства удобрений, моющих средств, нейтрализующих агентов для кислой среды в промышленных сточных водах.

Регенерация огнетушащих порошков

Если или проверка огнетушащих, эксплуатационных свойств порошка, используемого для зарядки автоматических, автономных установок подавления пожаров, показало, что он не соответствует техническим условиям, изложенным в сопроводительной технической документации; то при накоплении соответствующего значительного объема, непригодного к дальнейшему использованию, огнегасящего средства, он может быть не утилизирован, а направлен на регенерацию на заводы компаний производителей.

Заключение на огнетушащий порошок, прошедший регенерацию, т.е. полное восстановление своих свойств, служит основанием для его использования в качестве зарядов для огнетушителей, модулей, установок тушения огня.

Марки огнетушащих порошков

Наиболее широко распространены порошки на основе бикарбоната натрия и фосфорно-аммонийных солей. В России налажен выпуск порошков для тушения пожаров всех классов. Как следует из таблицы, каждый порошок имеет определенную область применения. Предпочтение, естественно, отдается порошкам общего назначения, как наиболее востребованным на практике. Например, порошки класса АВС на фосфорно-аммонийной основе, которые имеют широкий диапазон применения, прежде всего эффективны при ликвидации пожаров класса А1. Они, кроме способности тушить пламя в газовой фазе, обладают свойством плавиться в пламени и растекаться по горящей поверхности твердых материалов, образуя сплошную защитную пленку, надежно изолируя поверхность от доступа воздуха. Для тушения жидкостей и газов более эффективны порошки на основе бикарбоната натрия и хлорида калия.

Марка порошка Класс пожара Технические условия Основной компонент
ПХК B, C, D 10968286-06-94 Хлорид калия
ПСБ-ЗМ В, С, Е 2149-017-10968286-95 Бикарбонат натрия
ПГХК «Завеса» В, С, D, Е 84-07509103.452-96 Хлорид калия
Пирант-А А, В, С, Е 21 49-01 0-0020391 5-97 Фосфаты аммония
П-2АПМ, П-2АП А, В, С, Е У 6-05766362.001-97 Тоже
Вексон-АВС А, В, С, Е 21 49-028- 1 0968286-97 Тоже
П-ФКЧС-2 А, В, С, Е 21 49-084- 1 0964029-98 Аммофос
П-АГС А, В, С, Е 2149-001-00159158-99
П-ФКЧС-2 В, С, Е 2149-131-10964029-00 Бикарбонат натрия
Вексон-ВС 60 В, С, Е 2 1 49-086- 1 0968286-00 Тоже
Вексон-ВС 90 В, С, Е 2149-031-10968286-00 Тоже
ИСТО А, В, С, Е 2149-001-54572789-00 Аммофос
Феникс АВС-40 А, В, С, Е 2149-005-18215408-00 Тоже
Феникс АВС-70 А, В, С, Е 2149-005-18215408-00 Тоже
ПО-ПТМ А, В, С, Е 4854-00156762762-01 Тоже
Волгалит А, В, С, Е 2149-001-57847408-04 Тоже
Иркут А, В, С, Е 2149-002-51518690-14

Более подробно остановимся на характеристиках достаточно нового огнетушащего порошка «Иркут» , приобрести который можно у ООО «Всероссийское добровольное пожарное общество» (г. Омск).

Этот порошок предназначен для тушения пожаров классов во всех климатических зонах при температуре окружающей среды от минус 50 °С до плюс 50 °С, в составе всех средств порошкового пожаротушения и от минус 60 °С до плюс 90 °С.

№ п/п Наименование показателя Требование и норма по ТУ
1 Кажущаяся плотность неуплотнённого порошка кг/м Не менее 800
2 Кажущаяся плотность уплотненного порошка кг/м 3 Не менее 1000
3 Гранулометрический состав (массовая доля остатка порошка):
на сетке N1

на сетке N 01, %, не более

прошедшего через сетку N 005,%, не менее

Отсутствует

4 Массовое содержание влаги, % Не более 0,35
5 Увеличение массы при испытаниях на склонность к влагопоглощению, % Не более 3
6 Масса комков при испытаниях на склонность к слеживанию по отношению к массе образца, % Не более 2
7 Время, характеризующее способность порошка к водоотталкиванию, мин. Не менее 240
8 Текучесть порошка, кг/с Не менее 0,28
9 Срок сохраняемости, лет Не менее 10

Огнетушащие порошки представляют собой смеси неорганических соединений. Основными компонентами данных смесей являются хорошо растворимые соли ионного характера. Именно они и определяют огнетушащую способность порошков. Остальные компоненты - это добавки, которые улучшают текучесть порошков, а также придают им гидрофобные свойства и способность противостоять процесса слеживания.

Производим под заказ все виды огнетушащих порошков

Модульные - с повышенной тушащей способностью, порошки для тушения металлов класса Д , порошки специального назначения, порошки класса B C E и порошки класса A B C E .

Порошок огнетушащий П-ФКЧС ТУ 2149-084-10964029-98, изм1,2,3,4,5

П-ФКЧС – представляет собой сыпучий порошок от светло-серого до светло-коричневого цвета. Предназначен для тушения пожаров класса А (твердые горючие вещества), В (жидкие вещества), С (газообразные вещества) и (Е) электроустановок под напряжением электрического тока до 1000 В. Порошок может применяться при эксплуатации во всех климатических зонах и температурах от -60 до +70 °С.

Преимущества

  • Порошок выпускается с 1998 года.
  • ГОСТ Р 53280.4
  • Может использоваться во всех типах порошковых огнетушителей, модулях порошкового пожаротушения, автоматических установках пожаротушения.
  • Применяется на крупнейших заводах по производству огнетушителей России и СНГ.
  • ВНИИПО МЧС России
  • ГОСТ 12.1.007
  • Срок годности порошка 5 лет.

Физико-химические характеристики огнетушащего порошка П-ФКЧС

Диапазон температур хранения огнетушащего порошка от минус 60°С до плюс 70°С

Порошок огнетушащий Фоскон 433 ТУ 2149-223-10964029-2004

Фоскон 433 – предназначен для тушения пожаров класса BC и электроустановок под напряжением до 1000 В. Огнетушащий порошок не тушит пожары класса А, Д. Порошок может применяться при эксплуатации во всех климатических зонах и температурах от -50 до +50 °С. Вид климатического исполнения УХЛ 4 по ГОСТ 15150.

Преимущества

  • Полностью соответствует требованиям ГОСТ Р 53280.4
  • Может использоваться во всех типах порошковых огнетушителей.
  • Сертифицирован в области пожарной безопасности во ВНИИПО МЧС России , имеет гигиеническое заключение.
  • Относится к веществам 3 класса опасности по ГОСТ 12.1.007 . Пожаровзрывобезопасен, не токсичен.
  • Срок годности порошка 5 лет .

Физико-химические характеристики огнетушащего порошка Фоскон 433

Упаковка, транспортировка и хранение

Продукт упаковывается в: 30 кг мешки или МКР 800 кг

Транспортируется в крытых транспортных средствах, возможны поставки ЖД транспортом.

Условия поставки: самовывоз со склада в Буе или Москве, доставка транспортной компанией.

Диапазон температур хранения огнетушащего порошка от минус 50°С до плюс 50°С

Порошок огнетушащий Фоскон 430 ТУ 2149-200-10964029-2003, изм1
(Аналог П-ФКЧС, аттестован в Республике Беларусь)

Предназначен для тушения пожаров классов А,В,С и электроустановок под напряжением электрического тока до 1000 В. Порошок может применяться при эксплуатации во всех климатических зонах и температурах от -50 до +50 °С.

Порошок огнетушащий Фоскон 432 ТУ 2149-131-10964029-2000, изм. 5
(Аналог Фоскон 433, аттестован в Республике Беларусь)

Предназначен для тушения пожаров класса В (жидкие вещества), С (газообразные вещества) и электроустановок под напряжением до 1000 В.


Владельцы патента RU 2465938:

Изобретение относится к огнетушащим порошковым составам, которые могут быть использованы для тушения всех видов пожаров в химической, нефтехимической, угольной, деревообрабатывающей и других отраслях промышленности. Огнетушащий порошок на основе алюмосиликатных микросфер представляет собой узкие фракции полых сферических гранул со средним диаметром в интервале 2-230 мкм, при этом оболочка полых алюмосиликатных микросфер представляет собой композитный стеклокристаллический материал состава, мас.%: алюмосиликатная стеклофаза 57-92, фаза муллита 1-42, фаза кварца 1-9. Огнетушащий порошок на основе алюмосиликатных микросфер выделяют из летучих зол и концентратов ценосфер летучих зол от сжигания угля с использованием гранулометрической сепарации или аэродинамической классификации. Технический результат - высокая текучесть, низкая склонность к влагопоглощению, отсутствие склонности, к слеживанию, удовлетворительная огнетушащая способность. 2 н.п. ф-лы, 6 ил., 2 табл., 4 пр.

Изобретение относится к огнетушащим порошковым составам, которые могут быть использованы для тушения всех видов пожаров в химической, нефтехимической, угольной, деревообрабатывающей и других отраслях промышленности.

Огнетушащие порошки являются универсальным огнетушащим веществом благодаря наличию ряда достоинств [Баратов А.Н., Вогман Л.П. Огнетушащие порошковые составы, Москва, Стройиздат, 1982, 72 с.]: высокая огнетушащая способность, обусловленная механизмом тушения, который включает в себя ингибирование цепных реакций горения, разбавление горючей среды, огнепреграждение и ряд других эффектов, универсальность применения - тушение всех классов пожаров, возможность эксплуатации в широком диапазоне температур - от +50 до -50°С и др.

В настоящее время огнетушащие порошки представляют собой механические смеси мелкоизмельченных минеральных солей с различными добавками, препятствующими слеживанию и влагопоглощению. В качестве основы для огнетушащих порошков используют фосфорно-аммонийные соли (моно-, диаммонийфосфаты, аммофос), карбонат и бикарбонат натрия и калия, хлориды натрия и калия и др.; в качестве добавок для улучшения эксплуатационных характеристик - кремнийорганические соединения, аэросил, белая сажа, стеараты металлов, нефелин, тальк и др. [Пат. РФ №2232612, A62D 1/00, 20.07.2004; Пат. РФ №2236880, A62D 1/00, 27.09.2004; Пат. РФ №2370295, A62D 1/00, С01В 33/12, 10.01.2009}. Наряду с этим, для получения огнетушащих порошков используют различные природные минералы - галит, мусковит, шунгит [Пат. РФ №2417112, A62D 1/00, 27.04.2011; Пат. РФ №2372957, A62D 1/00, 20.11.2009; Пат. РФ №2256477, A62D 1/00, 20.07.2005}, а также отходы различных производств [Пат. РФ №2159138, A62D 1/00, 20.11.2000; Пат. РФ №2216371, A62D 1/00, 20.11.2003; Пат. РФ №2044543, A62D 1/00, 27.09.1995}.

Наряду с достоинствами, огнетушащие порошки обладают и рядом недостатков, наиболее характерными из которых является склонность к слеживанию и влагопоглощению, недостаточная текучесть, приводящие к сокращению срока эксплуатации и ограниченности использования средств пожаротушения, а также многокомпонентность составов, сложность рецептуры и большое число стадий (измельчение, сушка, смешение и др.), необходимых для их получения.

Известен огнетушащий порошок торговой марки «Вексон» [ТУ 2149-028-10968286}, представляющий собой дисперсную смесь минеральных солей с различными добавками. Данный состав характеризуется отсутствием склонности к слеживанию - 0%, однако способ его получения многостадиен и длителен во времени [Пат. РФ №2143297, С04В 33/28, 27.12.1999}.

Повышение текучести огнетушащих порошковых составов достигается использованием материалов с частицами сферической формы, текучесть которых сопоставима с текучестью жидкости. Известен способ получения керамических сфероидов размером 0,2-2,5 мм, включающий диспергирование шликера, содержащего порошок керамического материала и термопластичную органическую связку в формующей жидкости [Пат. РФ №2079468, С04В 33/28, 20.05.1997}. Полученные по заявляемому способу сфероиды рекомендуются для использования в пожаротушении, однако их огнетушащая способность и эксплуатационные свойства не определены.

Известен способ получения огнетушащего порошка, представляющего собой смесь полых сферических частиц фосфата аммония, полученных методом распылительной сушки, характеризующихся низкой плотностью и хорошей огнетушащей способностью [Пат. CN №1837733, A62D 1/06, 27.09.2006}. Однако для достижения необходимых эксплуатационных показателей по влагопоглощению и слеживанию данный порошок необходимо обрабатывать модифицирующими компонентами.

Наиболее близким по технической сущности к заявляемому изобретению является порошок с частицами сферической формы и содержанием фракции 40-70 мкм не менее 95 мас.%, представляющий собой многофазный композитный материал сложного состава ·a ·b, где M(I) -катионы Li + , Na + , K + , Rb + , Cs + , NH +4 или их смесь, М(II) - Mg 2+ , Ca 2+ , Zn 2+ или их смесь, M(IV) - Si +4 , Ti 4+ , Zr 4+ , или их смесь, A n1 - F - , Cl - , Br - , J - ; A n2 -NO -3 , , , - при следующем мольном соотношении компонентов и фаз: х=20-1, у=1-10, z=0-10, а=100-1, b=1-30 [Пат. РФ №2095103, A62D 1/00, 10.11.1997}. Огнетушащая способность порошка, охарактеризованная его расходом в г/см 2 при тушении пожара класса В, составила 0.3-0.6.

К недостаткам данного порошка следует отнести многочисленность компонентов и сложность рецептуры приготовления (растворение исходных солей, фильтрация суспензий, испарение воды, сушка), низкий выход целевого компонента, что приводит к значительному удорожанию заявляемого порошка. Отсутствие данных по исследованию эксплуатационных характеристик, таких как склонность к слеживанию и влагопоглощению, снижает практическую возможность использования данного изобретения.

Изобретение решает задачу получения огнетушащих порошков пониженной стоимости, обладающих высокими эксплуатационными характеристиками - текучестью, пониженной склонностью к влагопоглощению и слеживанию, удовлетворительной огнетушащей способностью.

Для решения поставленной задачи предложен огнетушащий порошок на основе алюмосиликатных микросфер, при этом оболочка микросфер представляет собой композитный стеклокристаллический материал.

Огнетушащий порошок представлен узкими фракциями полых сферических частиц со средним диаметром в интервале 2-230 мкм.

Задача достигается тем, что для получения огнетушащих порошков используют узкие фракции полых алюмосиликатных микросфер с содержанием Al 2 O 3 20-38 мас.% и SiO 2 53-67 мас.%, которые выделяют из летучих зол и концентратов ценосфер летучих зол от сжигания угля с использованием гранулометрической сепарации или аэродинамической классификации.

Указанные признаки не выявлены в других технических решениях при изучении уровня данной области техники и, следовательно, решение является новым и имеет изобретательский уровень.

Сущность изобретения заключается в следующем.

Стремлением повысить эффективность тушения пожаров всех классов, снизив при этом затраты на тушение требует активного поиска дешевых и универсальных огнетушащих порошков. Перспективным в этом направлении представляется применение в качестве базовых компонентов огнетушащих составов алюмосиликатных микросфер летучих зол.

Микросферы летучих зол являются доступным и дешевым материалом, получаемым в качестве побочного продукта при сжигании угля на тепловых электростанциях. Формирование микросфер происходит в результате термохимических превращений исходных минеральных форм угля и кристаллизации отдельных фаз в процессе охлаждения капель расплава. Их гранулометрический, химический и фазовый составы, а также размер кристаллитов образующихся минеральных фаз, морфология глобул зависят от большого числа параметров, в том числе состава исходного угля, типа используемых топок, режима охлаждения капель расплава и др. [Л.Я.Кизильштейн и др. Компоненты зол и шлаков ТЭС, Москва, Энергоатомиздат, 1995; Vassilev S.V., Fuel Proc. Technol. 47(1996)261].

По химическому составу микросферы представляют собой многокомпонентные системы SiO 2 -Al 2 O 3 -Fe 2 O 3 -CaO-MgO-Na 2 O-K 2 O-TiO 2 с содержанием стеклофазы от 80 до 90%, в которой распределены кристаллические фазы кварца, муллита, ферритовых шпинелей и кальцита.

Микросферы характеризуются сферической формой, широким фракционным составом, наличием внутренней полости, высокой прочностью и регулярной пористостью стеклокристаллической оболочки, термостабильностью и кислотостойкостью .

Особенности морфологии и минерально-фазового состава микросфер делают этот материал перспективным сырьем для получения современных функциональных материалов, в том числе в области пожарной безопасности.

Известен способ тушения пожара [Пат. РФ №2388507, А62С 3/00, 10.05.2010], в котором полые микросферы размером 20-80 мкм используются в качестве микроконтейнеров для доставки огнетушащего вещества в зону горения. Наряду с этим, полые алюмосиликатные микросферы используются в качестве рыхлителя для порошковых огнетушителей [Пат. РФ №2417808, A62D 1/00, 10.05.2011}, а также в качестве наполнителя огнестойкой композитной панели [Пат. РФ №2422598, Е04В 1/94, Е04С 2/26, С04В 26/04, С04В 18/06, 27.06.2011].

Создание дешевых огнетушащих порошков на основе алюмосиликатных микросфер летучих зол, которые являются отходами теплоэнергетики, обладают высокой текучестью за счет сферической формы, не подвержены слеживанию и не поглощают влагу, так как представляют собой стеклокристаллический материал, а также сами могут являться огнетушащим веществом - это наиболее эффективный и оптимальный вариант использования микросфер в области пожарной безопасности.

Наряду с этим, использование отходов теплоэнергетики для производства огнетушащих порошков решает экологические проблемы.

Сущность изобретения демонстрируется следующими примерами, таблицами и иллюстрациями.

На Фиг.1 приведены распределения частиц концентратов алюмосиликатных микросфер: 1 - серия М, 2 - серия Р.

На Фиг.2 приведены снимки оптического микроскопа узких фракций огнетушащих порошков со средним диаметром частиц: 1-230, 2-115, 3-113, 4-47 мкм.

На Фиг.3 изображена гранула, содержащая кристаллиты муллита, образца огнетушащего порошка со средним диаметром частиц 47 мкм.

На Фиг.4 изображена схема установки для разделения летучей золы в восходящем потоке воздуха: 1 - аэродинамическая труба, 2 - трубка для поступления воздуха, 3 - регулятор, 4 - насос, 5 - фильтр.

На Фиг.5 приведены снимки оптического (1) и растрового электронного микроскопа (2) узкой фракции огнетушащего порошка со средним диаметром частиц 9 мкм.

На Фиг.6 изображены гранулы, содержащие кристаллиты муллита, образца огнетушащего порошка со средним диаметром частиц 9 мкм

В качестве огнетушащих порошков используют концентраты алюмосиликатных микросфер (ценосфер) Московской ТЭЦ-22 (серия М), сжигающей каменные угли Кузнецкого бассейна, и Рефтинской ГРЭС (серия Р), сжигающей каменные угли Экибастузского бассейна.

С помощью оптического микроскопа Axioskop 40 (Carl Zeiss), снабженного окуляром W-PI 10х/23 и цифровой камерой PowerShot A 640 (Canon), и специально разработанной программы «Msphere», входными данными для которой являлись пары цифровых снимков, содержащие не менее 4500 частиц, определяют распределение частиц (Фиг.1) и устанавливают, что средний диаметр глобул для концентратов серий М и Р составляет 70 и 110 мкм соответственно.

Методами химического анализа по стандартной методике [ГОСТ 5382-91 «Цементы и материалы цементного производства. Методы химического анализа»} определяют химический состав концентратов ценосфер (Таблица 1; образцы 1-2), включающий содержание оксидов кремния, алюминия, железа, кальция, магния, калия, натрия, титана, марганца, серы и фосфора, а также потери при прокаливании (п.п.п.), в том числе устанавливают, что содержание основных макрокомпонентов в концентратах серий М и Р составляет: Al 2 O 3 -26 и 38 мас.%, SiO 2 -64 и 55 мас.% соответственно.

Эксплуатационные свойства огнетушащих порошков на основе концентратов алюмосиликатных микросфер определяют в соответствии с требованиями ГОСТ Р 53280.4-2009 ((Установки пожаротушения автоматические. Огнетушащие вещества. Часть 4. Порошки огнетушащие общего назначения. Общие технические требования и методы испытаний». Следует отметить, что все приемочные испытания огнетушащих порошков в России проводятся в соответствии с этими требованиями, учитывающими положения международного стандарта ISO 7202. У огнетушащих порошков определяют следующие характеристики: кажущаяся плотность неуплотненного и уплотненного порошка, фракционный состав, массовое содержание влаги, склонность к влагопоглощению, склонность к слеживанию. В качестве сравнения использовали известный огнетушащий порошок торговой марки «Вексон» АВС 25 [ТУ 2149-028-10968286].

Полученные численные значения характеристик огнетушащих порошков на основе концентратов алюмосиликатных микросфер серий М и Р приведены в таблице 2 (Образцы 1-2).

Анализ таблицы показывает, что концентраты алюмосиликатных микросфер характеризуются отсутствием склонности к слеживанию, превосходят известный порошок по склонности к влагопоглощению, соответствуют требованиям ГОСТ Р 53280.4-2009 по этим показателям и по массовому содержанию влаги, но не соответствуют ему по показателю кажущейся плотности.

Из концентрата ценосфер Рефтинской ГРЭС (серия Р) методом гранулометрической классификации выделяют фракцию ценосфер менее 50 мкм и определяют ее огнетушащие свойства с помощью лабораторной методики ФГУ ВНИИПО МЧС России на лабораторной установке с площадью очага горения 40 см 2 , используя в качестве горючего вещества октан (пожар класса В). Огнетушащую способность характеризуют расходом порошка в г/100 см 2 . В качестве порошка-сравнения использовали известный огнетушащий порошок торговой марки «Вексон» АВС 25 [ТУ 2149-028-10968286}. Полученные численные значения огнетушащей способности приведены в таблице 2. Анализ таблицы показывает, что заявляемый огнетушащий порошок по огнетушащим свойствам уступает порошку-сравнения и выбранному прототипу.

Из концентратов ценосфер Новосибирской ТЭЦ-5 (серия Н), Московской ТЭЦ-22 (серия М), сжигающих каменные угли Кузнецкого бассейна, и Рефтинской ГРЭС (серия Р), сжигающей каменные угли Экибастузского бассейна, выделяют по технологической схеме }