Старт в науке. Научно-исследовательский проект «Формула Пика в геометрии клетчатой бумаги

Урок геометрии в 8 классе по теме «Вычисление площадей фигур на клетчатой бумаге. Формула Пика.»

Цели урока:

Образовательные: повторение формул нахождения площадей, продолжение формирования навыков вычисления площадей, применение формул при решении задач разной сложности, изучение формулы Пика.

Развивающие: развить творческие способности у учащихся в ходе выполнения самостоятельных заданий, развивать умение обосновывать свое решение.

Воспитательные: развивать умение вести самостоятельный поиск решения, конструирования обобщенного способа решения новой задачи, учить трудолюбию, аккуратности, внимательности.

Тип урока: комбинированный урок.

Методы обучения: репродуктивный, словесно-наглядный, частично-поисковый.

Формы организации: общеклассная, индивидуальная.

Оборудование урока: мультимедийные средства обучения, лист с печатной основой у каждого учащегося (задачи на готовых чертежах, самостоятельная работа).

Ход урока.

I Организация начала урока (слайд 1)

На вашем столе лежат карточки для работы на уроке. Что вы видите на них?

(Различные многоугольники)

Какие фигуры вам знакомы?

Что мы учились находить у этих фигур? (Площади)

Что общего на этих рисунках? (Изображены на клетчатой бумаге).

Как вы думаете, чем мы будем заниматься сегодня на уроке? (Сегодня на уроке мы будем вычислять площади различных фигур на клетчатой бумаге).

А ещё мы с вами познакомимся с одной очень интересной формулой, которая позволит нам очень быстро вычислять площади различных фигур на клетчатой бумаге.

Итак тема урока… Слайд 1.

II Актуализация знаний и способов деятельности

    Повторим основные формулы нахождения площадей, которые нам пригодятся на сегодняшнем уроке. «Не бойтесь формул! Учитесь владеть этим инструментом человеческого гения! В формулах заключено величие и могущество разума…» Марков А. А.

    Выполняем тест. (слайды 3-8 )

    Нахождение площади многоугольника, «нарисованного на клеточках», очень интересная тема. Такие задачи встречаются в экзаменационных заданиях ОГЭ и ЕГЭ.

    (слайды 9 - 10)

III Закрепление знаний и способов деятельности.

А как поступим в этом случае?

Найти площади фигур, используя один из двух способов:

    разбить фигуру на прямоугольные треугольники и прямоугольники, площади которых уже нетрудно вычислить и сложить полученные результаты

    попробовать дополнить наш многоугольник до “хорошего”, нужного нам, то есть до такого, площадь которого мы сможем вычислить, потом из полученного числа вычесть площади добавленных частей.

(слады 11-14) (приложение 1 )

А всегда ли удобно таким способом находить площади фигур?

IV Усвоение новых знаний и способов деятельности. Формула Пика

Формула Пика позволит вам с необычайной легкостью находить площадь любого многоугольника на клетчатой бумаге с целочисленными вершинами.

Формула Пика очень удобна когда сложно догадаться, как разбить фигуру на удобные многоугольники или достроить…(слайд 17)

а) Биография

Герг Алекса́ндр Пик - . Родился 10 августа 1859 года в Вене в еврейской семье. Мать - Йозефа Шляйзингер, отец - Адольф Йозеф Пик.

Георга, который был одарённым ребёнком, обучал отец, возглавлявший частный институт. В 16 лет Георг закончил школу и поступил в . В 20 лет получил право преподавать физику и математику. В 1880 г. защитил докторскую диссертацию. В 1885 г. уехал в Прагу и стал преподавать в Немецком университете.

В 1910 году Георг Пик был в комитете, созданном Немецким университетом Праги для рассмотрения вопроса о принятии профессором в университет. Пик и физик были главными инициаторами этого назначения, и благодаря их усилиям Эйнштейн, с которым Пик впоследствии сдружился, в 1911 году возглавил кафедру теоретической физики в Немецком университете в Праге. Пик и Эйнштейн не только имели общие научные интересы, но и страстно увлекались музыкой. Пик, игравший в квартете, который состоял из университетских профессоров, ввёл Эйнштейна в научное и музыкальное общества Праги.

Круг математических интересов Пика был чрезвычайно широк. В частности, им написаны работы в области и , и абелевых функций, теории и , всего более 50 тем. Широкую известность получила открытая им в 1899 году для расчёта площади многоугольника. В Германии эта теорема включена в школьные учебники.

После того как Пик вышел в отставку в 1927 году, он получил звание почётного профессора и вернулся в Вену - город, в котором он родился. Однако в 1938 году он снова вернулся в Прагу.

13 июля 1942 года Пик был депортирован в созданный нацистами в северной Чехии , где умер две недели спустя в возрасте 82 лет. (слайд 17)

б) Формула Пика

Площадь многоугольника с целочисленными вершинами равна
В + Г/2 − 1
, где В - есть количество целочисленных точек внутри многоугольника, а
Г - количество целочисленных точек на границе многоугольника. (слайд 18)

Первым делом разберемся, что значит целочисленные точки внутри треугольника и на границе треугольника и как правильно вычислять их количество. Оказалось, это очень просто. Приведем несколько примеров.

в) Решение задач ( слайды 20-22) (приложение 2)

А можно ли доверять теореме Пика? Получатся ли одинаковые результаты при вычислении площадей разными способами?

V Первичная проверка усвоения

Самостоятельная работа: решить задачи двумя способами. ( слайды 23-27) (приложение 3)

VI Подведение итогов, инструктаж по домашнему заданию.

Домашнее задание: на листочках. (слайд 28) (приложение 4)

Литература и интернет – ресурсы:

    ЕГЭ. Математика. Тематическая рабочая тетрадь/ И.В.Ященко, С.А. Шестаков и др.- М: «Экзамен», 201

Самоанализ по полученным знаниям

Имя ученика: _______________________________________

Самоанализ по полученным знаниям

Имя ученика: _______________________________________

Самоанализ по полученным знаниям

Имя ученика: _______________________________________

Самоанализ по полученным знаниям

Имя ученика: _______________________________________

Приложение 1

Найдите площади фигур, изображённых на клетчатой бумаге с размером клетки 1см*1см. Ответ дайте в квадратных сантиметрах.

При помощи формулы Пика можно находить площадь фигуры, построенной на листе в клетку (треугольник, квадрат, трапеция, прямоугольник, многоугольник).

В задачах, которые будут на ЕГЭ, есть целая группа заданий, в которых дан многоугольник, построенный на листе в клетку и стоит вопрос о нахождении площади. Масштаб клетки - один квадратный сантиметр.

Просмотр содержимого презентации


Георг Пик

Георг Александр Пик,

австрийский математик

(10.08.1859 - 13.07.1942)


Формула была открыта в 1899 г.

Площадь искомой фигуры можно найти по формуле:

  • М – количество узлов на границе треугольника (на сторонах и вершинах):
  • N – количество узлов внутри треугольника;

* Под «узлами» имеется ввиду пересечение линий.


Найдём площадь треугольника:


Отметим узлы:

1 клетка = 1 см

  • M = 15 (обозначены красным)
  • N = 34 (обозначены синим)

Найдём площадь параллелограмма:


Отметим узлы:

  • M = 18 (обозначены красным)
  • N = 20 (обозначены синим)

Найдём площадь трапеции:


Отметим узлы:

  • M = 24 (обозначены красным)
  • N = 25 (обозначены синим)

Найдём площадь многоугольника:


Отметим узлы:

  • M = 14 (обозначены красным)
  • N = 43 (обозначены синим)



Отметим узлы:

  • M = 11 (обозначены красным)
  • N = 5 (обозначены синим)

Решите самостоятельно:

1. Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1см х 1 см. Ответ дайте в квадратных сантиметрах.




4. Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1см х 1 см. Ответ дайте в квадратных сантиметрах .



Опишем около неё прямоугольник:

  • Из площади прямоугольника (в данном случае это квадрат) вычтем площади полученных простых фигур:


Ответы:

задания

Вариант 1

Вариант 2

Вариант 3

Вариант 4


Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Выполнила ученица МОУ СОШ №7 8 «А» класса Юношева Ксения Преподаватель: Бабина Наталья Алексеевна г. Сальск 2011 год «Формула Пика»

Цели работы: Выяснение существования иной, отличной от школьной программы, формулы нахождения площади решетчатого многоугольника. Области применения искомой формулы.

Введение. Математическое образование, получаемое в общеобразовательных школах, является важнейшим компонентом общего образования и общей культуры современного человека. На данном этапе, школьная система рассчитана на одиннадцатилетнее обучение. Всем учащимся в конце одиннадцатого класса предстоит сдавать Единый Государственный Экзамен, который покажет уровень знаний, полученный во время учебы в школе. Но школьная программа не всегда предоставляет самые рациональные способы решения каких-либо задач. Например, просматривая результаты ЕГЭ 2010 года видно, что многие ученики теряют баллы из-за задания В6. Я задалась целью, как же можно сэкономить время и правильно решить это задание.

Задание В6. На клетчатой бумаге с клетками размером 1 см на 1 см изображены фигуры(см. рисунок). Найдите их площади в квадратных сантиметрах.

Итак, чтобы все-таки решить это задание мне нужно применить формулы нахождения площади, которые мы изучаем в 8классе.Но на это уйдет очень много времени, а мне нужно ответить на поставленный вопрос как можно быстрее, ведь время на экзамене строго ограниченно. Поэтому, проведя исследования, я выяснила, что существует теорема Пика, которая в школьной программе не изучается, но которая поможет мне быстрее справиться с заданием.

Историческая справка. Георг Александр Пик (10 августа, 1859 - 26 июля 1942) был австрийским математиком. Он умер в концлагере Терезин. Сегодня он известен из-за формулы Пика для определения площади решетки полигонов. Он опубликовал свою формулу в статье в 1899 году, она стала популярной, когда Хьюго Штейнгауз включил её в 1969 году в издание математических снимков. Пик учился в Венском университете и защитил кандидатскую в 1880 году. После получения докторской степени он был назначен помощником Эрнеста Маха в Шерльско-Фердинандском университете в Праге. Он стал преподавателем там в 1881 году. Взяв отпуск в университете в 1884 году, стал работать с Феликсом Клейном в Лейпцигском университете. Он оставался в Праге до своей отставки в 1927 году, а за тем вернулся в Вену. Пик возглавлял комитет в(тогда) немецком университете Праги, который назначил Альберта Эйнштейна профессором кафедры математической физики в 1911 году. Пик был избран членом Чешской академии наук и искусств, но был исключен после захвата нацистами Праги. После ухода на пенсию в 1927 году, Пик вернулся в Вену, город, где он родился. После аншлюса, когда нацисты вошли в Австрию 12 марта 1938 года, Пик вернулся в Прагу. В марте 1939 года нацисты вторглись в Чехословакию. Георг был отправлен в концентрационный лагерь Терезин 13 июля 1942. Он умер через две недели.

Теорема Пика. Теорема Пика - классический результат комбинаторной геометрии и геометрии чисел. Площадь многоугольника с целочисленными вершинами равна сумме В + Г/2 – 1, где В есть количество целочисленных точек внутри многоугольника, а Г количество целочисленных точек на границе многоугольника.

Доказате льст во теоремы Пика. Любой такой многоугольник легко разбить на треугольники с вершинами в узлах решётки, не содержащие узлов ни внутри, ни на сторонах. Можно показать, что площади всех этих треугольников одинаковы и равны 1/2, а, следовательно, площадь многоугольника равна половине их числа Т. Чтобы найти это число, обозначим через п число сторон многоугольника, через i - число узлов внутри его и через b - число узлов на сторонах, включая вершины. Общая сумма углов всех треугольников равна πТ. Теперь найдём эту сумму другим способом. Сумма углов с вершиной в любом внутреннем узле составляет 2 π , т. е. общая сумма таких углов равна 2 π i ; общая сумма углов при узлах на сторонах, но не в вершинах равна (b – n) π , а сумма углов при вершинах многоугольника - (п – 2) π . Таким образом, π Т = 2i π + (b – n) π + (n – 2) π , откуда получаем выражение для площади S многоугольника, известное как формула Пика. Например, на рисунке b = 9, i = 24, а следовательно, площадь многоугольника равна 27,5.

Применение. Итак, вернемся к заданию В6. Теперь, зная новую формулы, мы легко сможем найти площадь этого четырехугольника. Так как В – 5; Г – 14, то 5+14:2-1=11 (см в квадрате) Площадь данного четырехугольника равна 11 см в квадрате.

По той же формуле мы можем найти площадь треугольника. Так как В-14, Г-10,то 14+10:2-1=18 (см в квадрате) Площадь данного треугольника равна 18 см в квадрате.

Если В-9, Г-12, тогда: 9+12:2-1=14 (см в квадрате) Площадь данного четырехугольника равна 14 см в квадрате.

Области применения формулы. Помимо того, что формула применяется в различного рода экзаменах, заданиях и так далее, она сопровождает весь окружающий нас мир.

По формуле Пика S =В + ½ Г-1 1)туловище В=9,Г=26, S=9+½·26-1=9+13-1= 21 2) хвост В=0,Г=8, S= 0 +½· 8 -1= 3 3) S= 21+3=24

По формуле Пика S =В + ½ Г-1 В=36, Г=21 S = 36 + ½· 21 -1=36+10,5-1=45,5

Заключение. В итоге, я пришла к выводу, что существует много различных способов решения задач на нахождение площади, не изучаемых в школьной программе, и показала их на примере формулы Пика.

Справочник. Многоугольник без самопересечений называется решётчатым, если все его вершины находятся в точках с целочисленными координатами (в декартовой системе координат). Точка координатной плоскости называется целочисленной, если обе её координаты целые.


Эту темa будет интереснa учащимся 10-11 классов в рaмкaх подготовки к ЕГЭ. Формулу Пикa можно применять при вычислении площади фигуры, изобрaжённой на клетчaтой бумаге (это зaдaние предложенно в контрольно-измерительных мaтериaлaх ЕГЭ).

Ход урока

"Предмет математики настолько серьезен,

что полезно не упускать случая

сделать его немного занимательным"

(Б. Паскаль)

Учитель: Есть задачи, которые необыкновенные и не похожи на задачи из школьных учебников? Да, это задачи на клетчатой бумаге. Такие задачи есть в контрольно-измерительных материалах ЕГЭ. В чём же зaключaется особенность тaких задач, кaкие методы и приёмы используются для решения зaдaч нa клетчатой бумaге? Нa этом зaнятии мы исследуем зaдaчи нa клетчaтой бумaге, связaнные с нaхождением площади изображённой фигуры, и научимся вычислять площади многоугольников, нарисованных на клетчатом листке.

Учитель: Объектом исследовaния будут задачи на клетчатой бумаге.

Предметом нашего исследования будут задачи нa вычиcление площади многоугольников на клетчатой бумаге.

И целью исcледования будет формула Пика.

В - количеcтво целочисленных точек внутри многоугольника

Г - количество целочисленных точек на границе многоугольника

Это удобная формула, с помощью которой можно вычислить площадь любого многоугольника без самопересечений с вершинами в узлах клетчатой бумаги.

Кто же такой Пик? Пик Георг Алекcандров (1859-1943 гг.) - австрийский математик. Открыл формулу в 1899 году.

Учитель: Сформулируем гипотезу: площадь фигуры, вычисленная по формуле Пика, равна площади фигуры, вычисленной по формулам геометрии.

При решении задач на клетчатой бумаге нам понадобится геометрическое воображение и достаточно проcтые сведения, которые нам известны:

Площадь прямоугольника равна произведению смежных сторон.

Площадь прямоугольного треугольника равна половине произведения cторон, образующих прямой угол.

Учитель: Узлы cетки - точки, в которых пересекаются линии сетки.

Внутренние узлы многоугольника - синие. Узлы на границах многоугольника - коричневые.

Будем рассматривать только такие многоугольники, все вершины которых лежат в узлах клетчатой бумаги.

Учитель: Проведём исследования для треугольника. Сначала посчитаем площадь треугольника по формуле Пика.

В + Г /2 − 1 , где В Г — количество целочиcленных точек на границе многоугольника.

В = 34 , Г = 15 ,

В + Г /2 − 1 = 34 + 15 :2 − 1 = 40, 5 Ответ: 40, 5

Учитель : Теперь посчитаем площадь треугольника по формулам геометрии. Площадь любого треугольника, нарисованного на клетчатой бумаге, легко посчитать, представив её как cумму или разность площадей прямоугольных треугольников и прямоугольников, стороны которых идут по линиям сетки, проходящим через вершины нарисованного треугольника. Учащиеся выполняют вычисления в тетрадях. Затем проверяют свои результаты с вычислениями на доске.

Учитель: Сравнив результаты исследований, сделайте вывод. Получили, что площадь фигуры, вычисленная по формуле Пика, равна площади фигуры, вычисленной по формулам геометрии. Итак, гипотеза оказалась верной.

Далее учитель предлагает вычислить площадь «своего» произвольного многоугольника по формулам геометрии и по формуле Пика и сравнить полученные результаты. «Поиграть» с формулой Пика можно на сайте математических этюдов.

В заключение статьи предлагается одна из работ по теме «Вычисление площади произвольного многоугольника с помощью формулы Пика» .

Еще п ример:

Площадь многоугольника с целочисленными вершинами равна В + Г /2 − 1 , где В есть количество целочисленных точек внутри многоугольника, а Г — количество целочисленных точек на границе многоугольника.

В = 10 , Г = 6 ,

В + Г /2 − 1 = 10 + 6 :2 − 1 = 12 ОТВЕТ: 12

Учитель : Предлагаю вашему вниманию еще решить следующие задачи:

Ответ: 12

Ответ: 13

Ответ: 9

Ответ: 11,5

Ответ: 4

Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см ×1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

Чтобы оценить площадь многоугольника на клетчатой бумаге, достаточно подсчитать, сколько клеток покрывает этот многоугольник (площадь клетки мы принимаем за единицу). Точнее, если S - площадь многоугольника, - число клеток, которые целиком лежат внутри многоугольника, и - число клеток, которые имеют с внутренностью многоугольника хоть одну общую точку.

Будем рассматривать ниже только такие многоугольники, все вершины которых лежат в узлах клетчатой бумаги - в таких, где пересекаются линии сетки. Оказывается, что для таких многоугольников можно указать такую формулу:

где - площадь, r - число узлов, которые лежат строго внутри многоугольника.

Эту формулу называют «формула Пика» - по имени математика, открывшего её в 1899 году.

Простые треугольники

Площадь любого треугольника, нарисованного на клетчатой бумаге, легко посчитать, представив её как сумму или разность площадей прямоугольных треугольников и прямоугольников, стороны которых идут по линиям сетки, проходящим через вершины нарисованного треугольника. Проделав это, например, для треугольников, изображённых на рисунке 1.34, можно убедиться, что площадь получается всегда равной «полученному» числу - числу вида, где - целое.

Назовём треугольник простым, если ни внутри него, ни на его сторонах нет узлов сетки, за исключением вершин. Все простые треугольники на рис. 1.34 имеют площадь. Мы увидим, что это не случайно.

Задача . Три кузнечика (три точки) в начальный момент времени сидят в трёх вершинах одной клетки, а затем начинают «играть в чехарду»: каждый может прыгнуть через одного из двух других, после чего оказывается в симметричной относительно его точке (рис. 1.35, ясно, что после любого числа таких прыжков кузнечики будут попадать в узлы клетчатой бумаги). В каких тройках точек могут через несколько прыжков оказаться кузнечики?

Назовём треугольник достижимым, если в его вершинах могут одновременно оказаться три кузнечика, которые вначале были в трёх вершинах одной клетки; прыжком будем называть преобразование треугольника, заключающееся в том, что одна из вершин переходит в точку, симметричную относительно любой из двух других вершин (эти две вершины остаются на месте).

Теорема 1 . Следующие три свойства треугольников с вершинами в узлах клетчатой бумаги эквивалентны друг другу:

1) треугольник имеет площадь,

2) треугольник прост,

3) треугольник достижим.

Познакомимся со следующими свойствами простого треугольника, которые и приводят к справедливости данной теоремы.

1. Площадь треугольника при прыжке не меняется.

2. Любой достижимый треугольник имеет площадь.

3. Если достроить простой треугольник АВС до параллелограмма ABCD , то ни внутри, ни на сторонах этого параллелограмма не будет узлов (не считая вершин).

4. Из простого треугольника при прыжке получается простой.

5. Из простого треугольника один из углов - тупой или прямой (причём последний случай возможен только для треугольника, у которого три вершины принадлежат одной клетке, такой простой треугольник - со сторонами 1, 1, будем называть минимальным.)

6. Из любого простого не минимального треугольника можно одним прыжком получить треугольник, у которого наибольшая сторона меньше, чем наибольшая сторона исходного.

7. Любой простой треугольник можно конечным числом прыжков перевести в минимальный.

8. Любой простой треугольник достижим.

9. Любой простой треугольник имеет площадь.

10. Любой треугольник можно разрезать на простые.

11. Площадь любого треугольника равна, причём при любом разрезании его на простые их количество равно m .

12. Любой треугольник площади - простой.

13. Для любых двух узлов А и В решётки, на отрезке между которыми нет других узлов, найдётся узел С такой, что треугольник АВС - простой.

14. Узел С в предыдущем свойстве можно всегда выбрать так, что угол АСВ будет тупым или прямым.

15. Пусть клетчатая плоскость разрезана на равные параллелограммы так, что все узлы являются вершинами параллелограммов. Тогда каждый из треугольников, на которые один из этих параллелограммов разрезается своей диагональю - простой.

16. (Обратное 15). Треугольник АВС - простой тогда и только тогда, когда всевозможные треугольники, полученные из АВС параллельными переносами, переводящими узел А в различные узлы решётки, не накладываются друг на друга.

17. Если решётку - узлы клетчатой бумаги - разбить на четыре подрешётки с клетками (рис. 1.36), то вершины простого треугольника обязательно попадут в три разные подрешётки (все три имеют разные обозначения).

Следующие два свойства дают ответ к задаче о трёх кузнечиках.

18. Три кузнечика могут одновременно попасть в те и только те тройки точек, которые служат вершинами простого треугольника и имеют тот же знак, что и соответствующие вершины начального треугольника.

19. Два кузнечика могут одновременно попасть в те и только те пары узлов соответствующих знаков, на отрезке между которыми нет других узлов.

Триангуляция многоугольника

Мы рассмотрим частный вид многоугольников на клетчатой бумаге, которому в формуле Пика соответствуют значения. Но от этого частного случая можно перейти сразу к самому общему, воспользовавшись теоремой о разрезании на треугольники произвольного многоугольника (клетчатая бумага больше не нужна).

Пусть на плоскости задан некоторый многоугольник и некоторое конечное множество К точек, лежащих внутри многоугольника и на его границе (причём все вершины многоугольника принадлежат множеству К ).

Триангуляцией с вершинами К называется разбиение данного многоугольника на треугольники с вершинами в множестве К такое, что каждая точка из К служит вершиной каждому из тех треугольников триангуляции, которым эта точка принадлежит (то есть точки из К не попадают внутрь или на стороны треугольников, рис. 1.37).

Теорема 2 . а) Любой n -угольник можно разрезать диагоналями на треугольники, причём количество треугольников будет равно n - 2 (это разбиение - триангуляция с вершинами в вершинах n -угольника).

б) Пусть на границе многоугольника отмечено r точек (включая все вершины), внутри - ещё i точек. Тогда существует триангуляция с вершинами в отмеченных точках, причём количество треугольников такой триангуляции будет равно.

Разумеется, а) - частный случай б), когда.

Справедливость этой теоремы следует из следующих утверждений.

1) Из вершины наибольшего угла n -угольника () всегда можно провести диагональ, целиком лежащую внутри многоугольника.

2) Если n -угольник разрезан диагональю на р -угольник и q -угольник, то.

3) Сумма углов n -угольника равна.

4) Любой n -угольник можно разрезать диагоналями на треугольника.

5) Для любого треугольника, внутри и на границе которого отмечены несколько точек (в том числе и все три его вершины), существует триангуляция с вершинами в отмеченных точках.

6) То же самое верно и для любого n -угольника.

7) Число треугольников триангуляции равно, где i и r - количество отмечены несколько точек соответственно внутри и на границе многоугольника. Назовём разбиение n -угольника на несколько многоугольников правильным, если каждая вершина одного из многоугольников разбиения служит вершиной всех других многоугольников разбиения, которым она принадлежит. 8) Если из вершин k -угольников, на которые разбит правильным образом n -угольник, i вершин лежат внутри и r - на границе n -угольника, то количество k -угольников равно

9) Если точек плоскости и отрезков с концами в этих точках образуют многоугольник, правильно разбитый на многоугольников, то (рис. 1.38)

Из теорем 1 и 2 и вытекает формула Пика:

1.5 Теорема Пифагора о сумме площадей квадратов, построенных на катетах прямоугольного треугольника

Теорема . Сумма площадей квадратов, построенных на катетах прямоугольного треугольника, равна площади квадрата, построенного на гипотенузе этого треугольника.Доказательство. Пусть АВС (рис. 1.39) - прямоугольный треугольник, а BDEA , AFGE и BCKH - квадраты, построенные на его катетах и гипотенузе; требуется доказать, что сумма площадей двух первых квадратов равна площади третьего квадрата.

Проведём ВС . Тогда квадрат BCKH разделится на два прямоугольника. Докажем, что прямоугольник BLMH равновелик квадрату BDEA , а прямоугольник LCKM равновелик квадрату AFGC .

Проведём вспомогательные прямые DC и АН . Рассмотрим треугольники DCB и ABH . Треугольник DCB , имеющий основание BD , общее с квадратом BDEA , а высоту СN , равную высоте АВ этого квадрата, равновелик половине квадрата. Треугольник АВН , имеющий основание ВН , общее с прямоугольником BLMH , и высоту АР , равную высоте BL этого прямоугольника, равновелик его половине. Сравнивая эти два треугольника между собой, находим, что у них BD = ВА и ВС = ВН (как стороны квадрата);

Сверх того, DCB = АВН , т. к. каждый из этих углов состоит из общей части - АВС и прямого угла. Значит, треугольники АВН и ВСD равны. Отсюда следует, что прямоугольник BLMN равновелик квадрату BDEA . Точно также доказывается, что прямоугольник LGKM равновелик квадрату AFGC . Отсюда следует, что квадрат ВСКН равновелик сумме квадратов BDEA и AFGC .