Перечень нерешенных вопросов. Проблемы физики

  • Физика
    • Перевод

    Наша Стандартная модель элементарных частиц и взаимодействий не так давно стала настолько полной, насколько вообще можно было желать. Все до единой элементарные частицы – во всех их возможных видах – создали в лаборатории, измерили, и для всех определили свойства. Дольше всех державшиеся верхний кварк, антикварк, тау-нейтрино и антинейтрино, и, наконец, бозон Хиггса, пали жертвами наших возможностей.

    А последняя – бозон Хиггса – ещё и решила старую задачу физики: наконец, мы можем продемонстрировать, откуда элементарные частицы берут свою массу!

    Это всё круто, но наука-то не заканчивается в момент окончания решения этой загадки. Наоборот, она поднимает важные вопросы, и один из них, это «а что дальше?». Насчёт Стандартной модели можно сказать, что мы ещё не всё знаем. И для большинства физиков один из вопросов особенно важен – для его описания давайте сначала рассмотрим следующее свойство Стандартной модели.


    С одной стороны, слабое, электромагнитное и сильное взаимодействие могут быть очень важны, в зависимости от их энергий и расстояний, на которых происходит взаимодействие. Но с гравитацией всё не так.

    Мы можем взять две любых элементарных частицы – любой массы и подверженной любым взаимодействиям – и обнаружить, что гравитация на 40 порядков слабее, чем любая другая сила во Вселенной. Это значит, что сила гравитации в 10 40 раз слабее трёх оставшихся сил. К примеру, хотя они и не фундаментальные, но если вы возьмёте два протона и разнесёте их на метр, электромагнитное отталкивание между ними будет в 10 40 раз сильнее, чем гравитационное притяжение. Или, иными словами, нам нужно увеличить силу гравитации в 10 000 000 000 000 000 000 000 000 000 000 000 000 000 раз, чтобы сравнять её с любой другой из сил.

    При этом нельзя просто увеличить массу протона в 10 20 раз, чтобы гравитация стянула их вместе, преодолевая электромагнитную силу.

    Вместо этого для того, чтобы реакции вроде той, что проиллюстрирована выше, происходили спонтанно, когда протоны преодолевают их электромагнитное отталкивание, вам нужно собрать вместе 10 56 протонов. Только собравшись вместе и поддавшись силе гравитации, они смогут преодолеть электромагнетизм. Оказывается, что 10 56 протонов как раз составят минимальную возможную массу звезды.

    Это описание того, как работает Вселенная – но почему она такая, мы не знаем. Почему гравитация настолько слабее остальных взаимодействий? Почему «гравитационный заряд» (т.е. масса) настолько слабее электрического или цветового, или даже слабого?

    Вот в этом и состоит проблема иерархии, и она, по многим причинам, служит величайшей нерешённой проблемой физики. Ответ нам неизвестен, но нельзя сказать, что мы находимся в полном неведении. Теоретически у нас есть несколько хороших идей по поводу поиска решения, и инструмент для поиска доказательств их правильности.

    Пока что Большой адронный коллайдер – самый высокоэнергетический из коллайдеров – достигал беспрецедентных уровней энергии в лабораторных условиях, собирал кучу данных и воссоздавал происходящее в точках столкновения. Сюда входят и создание новых, доселе невиданных частиц (таких, как бозон Хиггса), и появление старых, всем известных частиц Стандартной модели (кварки, лептоны, калибровочные бозоны). Также он способен, в случае их существования, произвести любые другие частицы, не входящие в Стандартную модель.

    Существует четыре возможных способа, известных мне – то есть, четыре хороших идеи – решения проблемы иерархии. Хорошие новости в том, что если природа выбрала какой-то один из них, то БАК его найдёт! (А если нет, поиски продолжатся).

    Кроме бозона Хиггса, найденного несколько лет назад, никаких новых фундаментальных частиц на БАК не нашли. (Более того, вообще не наблюдается никаких интригующих новых кандидатов в частицы). И ещё, найденная частица полностью соответствовала описанию Стандартной модели; никаких статистически важных намёков на новую физику замечено не было. Ни на композитные бозоны Хиггса, ни на множественные хиггсовские частицы, ни на нестандартные распады, ничего такого.

    Но теперь мы начали получать данные от ещё более высоких энергий, в два раза больше предыдущих, до 13-14 ТэВ, чтобы найти что-нибудь ещё. И какие же в данном ключе есть возможные и разумные решения проблемы иерархии?

    1) Суперсимметрия, или SUSY. Суперсимметрия – особая симметрия, способная заставить нормальные массы любых частиц, достаточно крупных для того, чтобы гравитация была сравнима с другими воздействиями, взаимно уничтожиться с большой степенью точности. Эта симметрия также предполагает, что у каждой частицы в стандартной модели есть суперчастица-партнёр, и что существует пять частиц Хиггса и пять их суперпартнёров. Если такая симметрия существует, она, должно быть, нарушена, или у суперпартнёров были бы такие же массы, как у обычных частиц, и их бы уже давно нашли.

    Если SUSY существует на подходящем для решения проблемы иерархии масштабе, то БАК, дойдя до энергий в 14 ТэВ, должен найти хотя бы одного суперпартнёра, а также вторую частицу Хиггса. Иначе существование очень тяжёлых суперпартнёров само по себе приведёт ещё к одной проблеме иерархии, у которой не будет хорошего решения. (Что интересно, отсутствие SUSY-частиц на всех энергиях опровергнет теорию струн, поскольку суперсимметрия – это необходимое условие для теорий струн, содержащих стандартную модель элементарных частиц).

    Вот вам первое возможное решение проблемы иерархии, у которого в настоящий момент нет никаких доказательств.

    Имеется возможность создать крохотные сверхохлаждённые кронштейны, наполненные пьезоэлектрическими кристаллами (вырабатывающими электроэнергию при деформации), с расстояниями между ними . Эта технология позволяет нам наложить на «большие» измерения ограничения в 5-10 микрон. Иначе говоря, гравитация работает согласно предсказаниям ОТО на масштабах гораздо меньших миллиметра. Так что если и существуют большие дополнительные измерения, они находятся на уровнях энергий, недоступных для БАК, и что более важно, не решают проблему иерархии.

    Конечно, для проблемы иерархии может найтись совершенно другое решение , которое на современных коллайдерах не найти, или решения ей вообще нет; это просто может быть свойство природы безо всякого объяснения для него. Но наука не будет продвигаться без попыток, и именно это пытаются делать эти идеи и поиски: продвигать наши знания о Вселенной вперёд. И, как всегда, с началом второго запуска БАК я с нетерпением ожидаю того, что там может появиться, кроме уже открытого бозона Хиггса!

    Теги:

    • гравитация
    • фундаментальные взаимодействия
    • бак
    Добавить метки

    10 нерешённых проблем современной физики
    Ниже мы приведем список нерешенных проблем современной физики.

    Некоторые из этих проблем носят теоретический характер. Это означает, что существующие теории оказываются неспособными объяснить определённые наблюдаемые явления или экспериментальные результаты.

    Другие проблемы являются экспериментальными, а это означает, что имеются трудности в создании эксперимента по проверке предлагаемой теории или по более подробному исследованию какого-либо явления.

    Некоторые из этих проблем тесно взаимосвязаны. Например, дополнительные измерения или суперсимметрия могут решить проблему иерархии. Считается, что полная теорияквантовой гравитации способна ответить на бо́льшую часть из перечисленных вопросов.

    Каким будет конец Вселенной?

    Разгадка во многом зависит от тёмной энергии, которая остаётся неизвестным членом уравнения.

    Тёмная энергия ответственна за ускоряющееся расширение Вселенной, но ее происхождение — тайна, покрытая мраком. Если тёмная энергия постоянна в течение долгого времени, нас, вероятно, ждёт «большое замораживание»: Вселенная продолжит расширяться всё быстрее, и в конечном счёте галактики настолько удалятся друг от друга, что нынешняя пустота космоса покажется детской забавой.


    Если тёмная энергия возрастает, расширение станет настолько быстрым, что увеличится пространство не только между галактиками, но и между звёздами, то есть сами галактики будут разорваны; этот вариант называется «большим разрывом».

    Ещё один сценарий состоит в том, что тёмная энергия уменьшится и уже не сможет противодействовать силе тяжести, что заставит Вселенную свернуться («большое сжатие»).

    Ну а суть в том, что, как бы ни разворачивались события, мы обречены. До этого ещё, впрочем, миллиарды или даже триллионы лет — достаточно, чтобы разобраться в том, как же всё-таки погибнет Вселенная.

    Квантовая гравитация

    Несмотря на активные исследования, теория квантовой гравитации пока не построена. Основная трудность в её построении заключается в том, что две физические теории, которые она пытается связать воедино, — квантовая механика и общая теория относительности (ОТО) — опираются на разные наборы принципов.

    Так, квантовая механика формулируется как теория, описывающая временну́ю эволюцию физических систем (например атомов или элементарных частиц) на фоне внешнегопространства-времени .

    В ОТО внешнего пространства-времени нет — оно само является динамической переменной теории, зависящей от характеристик находящихся в нём классических систем.

    При переходе к квантовой гравитации, как минимум, нужно заменить системы на квантовые (то есть произвести квантование). Возникающая связь требует какого-то квантования геометрии самого пространства-времени, причём физический смысл такого квантования абсолютно неясен и сколь-либо успешная непротиворечивая попытка его проведения отсутствует.

    Даже попытка провести квантование линеаризованной классической теории гравитации (ОТО) наталкивается на многочисленные технические трудности — квантовая гравитация оказывается неперенормируемой теорией вследствие того, что гравитационная постоянная является размерной величиной.

    Ситуация усугубляется тем, что прямые эксперименты в области квантовой гравитации, из-за слабости самих гравитационных взаимодействий, недоступны современным технологиям. В связи с этим в поиске правильной формулировки квантовой гравитации приходится пока опираться только на теоретические выкладки.

    Бозон Хиггса не имеет абсолютно никакого смысла. Почему же он существует?

    Бозон Хиггса объясняет, как все остальные частицы приобретают массу, но в то же время поднимает множество новых вопросов. Например, почему бозон Хиггса взаимодействует со всеми частицами по-разному? Так, t-кварк взаимодействует с ним сильнее, чем электрон, из-за чего масса первого намного выше, чем у второго.

    Кроме того, бозон Хиггса — первая элементарная частица с нулевым спином.

    «Перед нами совершенно новая область физики элементарных частиц, — говорит учёный Ричард Руис  — Мы понятия не имеем, какова её природа».

    Излучение Хокинга

    Производят ли чёрные дыры тепловое излучение, как это предсказывает теория? Содержит ли это излучение информацию об их внутренней структуре или нет, как следует из оригинального расчета Хокинга?


    Почему случилось так, что Вселенная состоит из материи, а не антиматерии?

    Антиматерия — та же материя: она обладает точно такими же свойствами, как вещество, из которого состоят планеты, звёзды, галактики.

    Отличие только одно — заряд. Согласно современным представлениям, в новорождённой Вселенной того и другого было поровну. Вскоре после Большого взрыва материя и антиматерия аннигилировали (прореагировали с взаимным уничтожением и возникновением других частиц друг друга).

    Спрашивается, как так вышло, что некоторое количество материи всё-таки осталось? Почему именно материя добилась успеха, а антивещество проиграло «перетягивание каната»?

    Чтобы объяснить это неравенство, учёные усердно ищут примеры нарушения CP-инвариантности, то есть процессов, при которых частицы предпочитают распадаться с образованием материи, но не антиматерии.

    «Прежде всего хотелось бы понять, различаются ли нейтринные осцилляции (превращение нейтрино в антинейтрино) между нейтрино и антинейтрино, — говорит поделившаяся вопросом Алисия Мэрино из Колорадского университета. — Ничего подобного до сих пор не наблюдалось, но мы надеемся на следующее поколение экспериментов».

    Теория всего

    Существует ли теория, которая объясняет значения всех фундаментальных физических констант? Существует ли теория, которая объясняет, почему законы физики таковы, как они есть?


    Теория всего— гипотетическая объединённая физико-математическая теория, описывающая все известные фундаментальные взаимодействия.

    Первоначально данный термин использовался в ироническом ключе для обозначения разнообразных обобщённых теорий. Со временем термин закрепился в популяризацияхквантовой физики для обозначения теории, которая бы объединила все четыре фундаментальные взаимодействия в природе.

    В течение двадцатого века было предложено множество «теорий всего», но ни одна из них не смогла пройти экспериментальную проверку, или существуют значительные затруднения в организации экспериментальной проверки для некоторых из кандидатов.

    Бонус: Шаровая молния

    Какова природа этого явления? Является ли шаровая молния самостоятельным объектом или подпитывается энергией извне? Все ли шаровые молнии имеют одну и ту же природу или существуют разные их типы?


    Шаровая молния — светящийся плавающий в воздухе огненный шар, уникально редкое природное явление.

    Единой физической теории возникновения и протекания этого явления к настоящему времени не представлено, также существуют научные теории, которые сводят феномен к галлюцинациям.

    Существуют около 400 теорий, объясняющих явление, но ни одна из них не получила абсолютного признания в академической среде. В лабораторных условиях похожие, но кратковременные явления удалось получить несколькими разными способами, так что вопрос о природе шаровой молнии остаётся открытым. По состоянию на конец XX века не было создано ни одного опытного стенда, на котором это природное явление искусственно воспроизводилось бы в соответствии с описаниями очевидцев шаровой молнии.

    Широко распространено мнение, что шаровая молния — явление электрического происхождения, естественной природы, то есть представляет собой особого вида молнию, существующую продолжительное время и имеющую форму шара, способного перемещаться по непредсказуемой, иногда удивительной для очевидцев траектории.

    Традиционно достоверность многих свидетельств очевидцев шаровой молнии остаётся под сомнением, в том числе:

    • сам факт наблюдения хоть какого-то явления;
    • факт наблюдения именно шаровой молнии, а не какого-то другого явления;
    • отдельные подробности явления, приводимые в свидетельстве очевидца.

    Сомнения в достоверности многих свидетельств осложняют изучение явления, а также создают почву для появления разных спекулятивно-сенсационных материалов, якобы связанных с этим явлением.

    По материалам: несколько десятков статей из

    АРТУР УИГГИНС, ЧАРЛЬЗ УИНН

    ПЯТЬ

    НЕРЕШЕННЫХ

    ПРОБЛЕМ

    НАУКИ

    Рисунки Сидни Харриса

    Уиггинс А . , Уинн Ч .

    THE FIVE BIGGEST UNSOLVED PROBLEMS IN SCIENCE

    ARTHUR W. WIGGINS CHARLES M. WYNN

    With Cartoon Commentary by Sidney Harris

    John Wiley & Sons, Inc.

    Книга рассказывает о крупнейших проблемах астрономии, физики, химии, биологии и геологии, над которыми сейчас работают ученые. Авторы рассматривают открытия, приведшие к этим проблемам, знакомят с работой по их решению, обсуждают новые теории, в том числе теории струн, хаоса, генома человека и укладки белков.

    Предисловие

    Мы, люди, ютимся на обломке скалы под названием «планета», обращающейся вокруг ядерного реактора под названием «звезда», которая входит в огромное собрание звезд под названием «Галактика», а та в свою очередь - часть скоплений галактик, составляющих Вселенную. Наше состояние, именуемое нами жизнью, присуще множеству иных организмов на этой планете, но, похоже, мы одни обладаем орудием ума для постижения Вселенной и всего, чем она располагает. Свои усилия по выяснению природы Вселенной мы подводим под понятие науки. Такое понимание дается нелегко, и путь к нему долог. Однако успехи налицо.

    Данная книга поведает читателю о крупнейших нерешенных проблемах науки, над которыми работают сегодня ученые. При всем изобилии экспериментальных данных их оказывается недостаточно, чтобы подтвердить ту или иную гипотезу. Мы рассмотрим события и открытия, приведшие к этим проблемам, а затем ознакомим вас с тем, как сегодня их пытаются решить ученые, находящиеся на переднем крае науки. Сидни Харрис, лучший американский иллюстратор научных изданий, оживит наши рассуждения присущим его рисункам юмором, не только поясняя затрагиваемые идеи, но и высвечивая их совершенно по-новому.

    Мы обсуждаем здесь также нерешенные проблемы в основных отраслях естествознания, руководствуясь в своем выборе степенью их значимости, трудности, широты охвата и масштабом последствий. Наряду с ними мы включили в книгу краткий обзор и некоторых других проблем в каждой из затронутых отраслей знания, а также «Список идей», где читатель найдет дополнительные сведения о подоплеке некоторых нерешенных проблем. Наконец, мы привели «Источники для углубленного изучения», где перечислены информационные ресурсы, призванные помочь больше узнать о заинтересовавших вас предметах.

    Особой благодарности заслуживают Кейт Бредфорд, старший редактор издательства Wiley , первый подавший мысль о такой книге, и наш литературный агент Луиза Кетц за ее неизменные слова поддержки.

    Глава первая

    Видение науки

    Ведь человеку образованному свойственно добиваться точности для каждого рода [предметов] 1

    в той степени, в какой это допускает природа предмета. Одинаково [нелепым] кажется и довольствоваться пространными рассуждениями математика, и требовать от ритора строгих доказательств.

    Аристотель

    Наука ≠ техника

    Разве наука и техника не одно и то же? Нет, они различны.

    Хотя техника, определяющая современную культуру, развивается благодаря постижению наукой Вселенной, техника и наука руководствуются разными побуждениями. Рассмотрим основные различия между наукой и техникой. Если занятия наукой вызваны желанием человека познать и понять Вселенную, то технические новшества - стремлением людей изменить условия своего существования, чтобы добыть себе пропитание, помочь другим, а нередко и совершить насилие ради личной выгоды.

    Люди зачастую одновременно занимаются «чистой» и прикладной наукой, но в науке можно вести фундаментальные исследования без оглядки на конечный результат. Британский премьер-министр Уильям Гладстон заметил как-то Майклу Фарадею по поводу его основополагающих открытий, связавших воедино электричество и магнетизм: «Все это весьма занятно, но каков в этом прок?» Фарадей ответил: «Сэр, я не знаю, но однажды вы от этого выгадаете». Почти половину нынешнего богатства развитым странам принесла связь электричества с магнетизмом.

    Прежде чем научные достижения станут достоянием техники, требуется принять во внимание дополнительные соображения: разработка какого устройства возможна, что допустимо построить (вопрос, по сути, относящийся к области этики). Этика же принадлежит к совершенно иной области умственной деятельности человека: гуманитарным наукам.

    Основное различие между естествознанием и гуманитарными науками состоит в объективности. Естествознание стремится изучать поведение Вселенной по возможности объективно, тогда как перед гуманитарными науками такой цели или требования нет. Перефразируя слова ирландской писательницы XIX века Маргарет Волф Хангерфорд, можно сказать: «Красота [и истина, и справедливость, и благородство, и...] видится всеми по-разному».

    Наука далеко не монолитна. Естественные науки заняты изучением как окружающей среды, так и самих людей, поскольку они функционально подобны иным формам жизни. А гуманитарные науки исследуют рациональное (эмоциональное) поведение людей и их установки, которые необходимы им для социального, политического и экономического взаимодействия. На рис. 1.1 графически представлены эти взаимосвязи.

    Как бы ни способствовало такое стройное изложение пониманию существующих связей, действительность всегда оказывается значительно сложнее. Этика помогает определить, что исследовать, какие исследовательские методы, приемы использовать и какие эксперименты недопустимы ввиду таящейся в них угрозы благополучию людей. Политэкономия и политология также играют огромную роль, поскольку наука может изучать лишь то, что культура склонна поощрять как орудия производства, рабочую силу или что-то, политически приемлемое.

    Механизм работы науки

    Успех науки в изучении Вселенной складывается из наблюдений и выдвижения идей. Такого рода взаимообмен именуют научным методом (рис. 1.2).

    В ходе наблюдения то или иное явление воспринимается органами чувств при помощи приборов или без них. Если в естествознании наблюдения ведутся за множеством подобных предметов (например, атомов углерода), то науки о человеке имеют дело с меньшим числом различных субъектов (например, людей, пусть даже однояйцевых близнецов).

    После сбора данных наш ум, стремясь их упорядочить, начинает строить образы или объяснения. В этом и заключается работа человеческой мысли. Данный этап именуют этапом выдвижения гипотезы. Построение общей гипотезы на основе полученных наблюдений ведется посредством индуктивного умозаключения, которое содержит обобщение и поэтому считается самым ненадежным видом умозаключения. И как бы ни пытались искусственно строить выводы, в рамках научного метода подобного рода деятельность ограничена, поскольку на последующих этапах гипотеза сталкивается с действительностью.

    Зачастую гипотеза целиком или отчасти формулируется на языке, отличающемся от обиходной речи, языке математики. Для приобретения математических навыков требуется приложить большие усилия, иначе несведущим в математике людям при объяснении научных гипотез понадобится перевод математических понятий на повседневный язык. К сожалению, при этом смысл гипотезы может существенно пострадать.

    После построения гипотезу можно использовать для предсказания некоторых событий, которые должны произойти, если гипотеза верна. Такое предсказание выводится из гипотезы посредством дедуктивного умозаключения. Например, второй закон Ньютона гласит, что F = та. Если т равно 3 единицам массы, а а - 5 единицам ускорения, то F должна равняться 15 единицам силы. Выполнение математических расчетов на данном этапе могут взять на себя вычислительные машины, работающие на основе дедуктивного метода.

    Следующий этап - проведение опыта, чтобы выяснить, подтверждается ли предсказание, сделанное на предыдущем этапе. Некоторые опыты провести довольно просто, но чаще - крайне затруднительно. Даже изготовив сложное и дорогостоящее научное оборудование для получения весьма ценных данных, нередко бывает нелегко найти деньги, а затем запастись терпением, необходимым для обработки и осмысления огромного массива этих данных. Естествознание обладает преимуществом: здесь можно обособить изучаемый предмет, тогда как наукам о человеке и обществе приходится иметь дело с многочисленными переменными, зависящими от различных взглядов (пристрастий) многих людей.

    После завершения опытов их результаты сверяются с предсказанием. Поскольку гипотеза носит общий, а экспериментальные данные - частный характер, то результат, когда опыт согласуется с предсказанием, не доказывает гипотезу, а лишь подтверждает ее. Однако если исход опыта не согласуется с предсказанием, определенная сторона гипотезы оказывается ложной. Эта черта научного метода, именуемая фальсифицируемостью (опровергаемостью), накладывает на гипотезы определенное жесткое требование. Как выразился Альберт Эйнштейн, «никаким количеством экспериментов нельзя доказать теорию; но достаточно одного эксперимента, чтобы ее опровергнуть».

    Оказавшуюся ложной гипотезу необходимо каким-то образом пересмотреть, т. е. слегка изменить, основательно переработать или же вовсе отбросить. Крайне трудно бывает решить, какие изменения здесь уместны. Пересмотренным гипотезам предстоит снова проделать тот же путь, и либо они устоят, либо от них откажутся в ходе дальнейших сопоставлений предсказания с опытом.

    Другая сторона научного метода, не позволяющая сбиться с пути, - воспроизведение. Любой наблюдатель с соответствующей выучкой и подобающим оснащением должен суметь повторить опыты или предсказания и получить сравнимые результаты. Иначе говоря, науке свойственны постоянные перепроверки. Например, коллектив ученых из Национальной лаборатории им. Лоуренса Калифорнийского университета в Беркли 2 пытался получить новый химический элемент, обстреливая свинцовую мишень мощным лучом ионов криптона и затем изучая полученные вещества. В 1999 году ученые объявили о синтезе элемента с порядковым номером 118.

    Синтез нового элемента - это всегда важное событие. В данном случае его синтез мог подтвердить бытовавшие представления о стабильности тяжелых элементов. Однако ученые других лабораторий Общества по изучению тяжелых ионов (Дармштадт, Германия), Большого государственного ускорителя тяжелых ионов Кайенского университета (Франция) и Лаборатория атомной физики Физико-химического института Рикэн (Япония) - не смогли повторить синтез элемента 118. Расширенный коллектив лаборатории в Беркли повторил опыт, но ему также не удалось воспроизвести полученные ранее результаты. В Беркли перепроверили исходные экспериментальные данные посредством программы с видоизмененным кодом и не сумели подтвердить наличия элемента 118. Пришлось отзывать свою заявку. Данный случай свидетельствует, что научный поиск бесконечен.

    Порой наряду с опытами перепроверяются и гипотезы. В феврале 2001 года Брукхэйвенская национальная лаборатория в Нью-Йорке сообщила об опыте, в котором магнитный момент мюона (подобно электрону отрицательно заряженной частицы, но значительно более тяжелой) слегка превышает величину, предопределенную стандартной моделью физики элементарных частиц (подробнее об этой модели см. гл. 2). А поскольку предположения стандартной модели о многих иных свойствах частиц очень хорошо согласовывались с опытными данными, такое расхождение по поводу величины магнитного момента мюона разрушало основу стандартной модели.

    Предсказание магнитного момента у мюона стало следствием сложных и долгих расчетов, независимо проведенных учеными в Японии и Нью-Йорке в 1995 году. В ноябре 2001 года эти расчеты повторили французские физики, которые обнаружили ошибочный отрицательный знак у одного из членов уравнения и разместили свои результаты в Интернете. В итоге Брукхэйвенская группа перепроверила собственные вычисления, признала ошибку и опубликовала исправленные результаты. В итоге удалось сократить расхождение между предсказанием и опытными данными. Стандартной модели вновь предстоит выдержать испытания, которые ей готовит непрекращающийся научный поиск.

    Ниже мы приведем список нерешенных проблем современной физики.

    Некоторые из этих проблем носят теоретический характер. Это означает, что существующие теории оказываются неспособными объяснить определённые наблюдаемые явления или экспериментальные результаты.

    Другие проблемы являются экспериментальными, а это означает, что имеются трудности в создании эксперимента по проверке предлагаемой теории или по более подробному исследованию какого-либо явления.

    Некоторые из этих проблем тесно взаимосвязаны. Например, дополнительные измерения или суперсимметрия могут решить проблему иерархии. Считается, что полная теория квантовой гравитации способна ответить на бо́льшую часть из перечисленных вопросов.

    Каким будет конец Вселенной?

    Разгадка во многом зависит от тёмной энергии, которая остаётся неизвестным членом уравнения.

    Тёмная энергия ответственна за ускоряющееся расширение Вселенной, но ее происхождение - тайна, покрытая мраком. Если тёмная энергия постоянна в течение долгого времени, нас, вероятно, ждёт «большое замораживание»: Вселенная продолжит расширяться всё быстрее, и в конечном счёте галактики настолько удалятся друг от друга, что нынешняя пустота космоса покажется детской забавой.

    Если тёмная энергия возрастает, расширение станет настолько быстрым, что увеличится пространство не только между галактиками, но и между звёздами, то есть сами галактики будут разорваны; этот вариант называется «большим разрывом».

    Ещё один сценарий состоит в том, что тёмная энергия уменьшится и уже не сможет противодействовать силе тяжести, что заставит Вселенную свернуться («большое сжатие»).

    Ну а суть в том, что, как бы ни разворачивались события, мы обречены. До этого ещё, впрочем, миллиарды или даже триллионы лет - достаточно, чтобы разобраться в том, как же всё-таки погибнет Вселенная.

    Квантовая гравитация

    Несмотря на активные исследования, теория квантовой гравитации пока не построена. Основная трудность в её построении заключается в том, что две физические теории, которые она пытается связать воедино, - квантовая механика и общая теория относительности (ОТО) - опираются на разные наборы принципов.

    Так, квантовая механика формулируется как теория, описывающая временну́ю эволюцию физических систем (например атомов или элементарных частиц) на фоне внешнего пространства-времени .

    В ОТО внешнего пространства-времени нет - оно само является динамической переменной теории, зависящей от характеристик находящихся в нём классических систем.

    При переходе к квантовой гравитации, как минимум, нужно заменить системы на квантовые (то есть произвести квантование). Возникающая связь требует какого-то квантования геометрии самого пространства-времени, причём физический смысл такого квантования абсолютно неясен и сколь-либо успешная непротиворечивая попытка его проведения отсутствует.

    Даже попытка провести квантование линеаризованной классической теории гравитации (ОТО) наталкивается на многочисленные технические трудности - квантовая гравитация оказывается неперенормируемой теорией вследствие того, что гравитационная постоянная является размерной величиной.

    Ситуация усугубляется тем, что прямые эксперименты в области квантовой гравитации, из-за слабости самих гравитационных взаимодействий, недоступны современным технологиям. В связи с этим в поиске правильной формулировки квантовой гравитации приходится пока опираться только на теоретические выкладки.

    Бозон Хиггса не имеет абсолютно никакого смысла. Почему же он существует?

    Бозон Хиггса объясняет, как все остальные частицы приобретают массу, но в то же время поднимает множество новых вопросов. Например, почему бозон Хиггса взаимодействует со всеми частицами по-разному? Так, t-кварк взаимодействует с ним сильнее, чем электрон, из-за чего масса первого намного выше, чем у второго.

    Кроме того, бозон Хиггса - первая элементарная частица с нулевым спином.

    «Перед нами совершенно новая область физики элементарных частиц, - говорит учёный Ричард Руис  - Мы понятия не имеем, какова её природа».

    Излучение Хокинга

    Производят ли чёрные дыры тепловое излучение, как это предсказывает теория? Содержит ли это излучение информацию об их внутренней структуре или нет, как следует из оригинального расчета Хокинга?

    Почему случилось так, что Вселенная состоит из материи, а не антиматерии?

    Антиматерия - та же материя: она обладает точно такими же свойствами, как вещество, из которого состоят планеты, звёзды, галактики.

    Отличие только одно - заряд. Согласно современным представлениям, в новорождённой Вселенной того и другого было поровну. Вскоре после Большого взрыва материя и антиматерия аннигилировали (прореагировали с взаимным уничтожением и возникновением других частиц друг друга).

    Спрашивается, как так вышло, что некоторое количество материи всё-таки осталось? Почему именно материя добилась успеха, а антивещество проиграло «перетягивание каната»?

    Чтобы объяснить это неравенство, учёные усердно ищут примеры нарушения CP-инвариантности, то есть процессов, при которых частицы предпочитают распадаться с образованием материи, но не антиматерии.

    «Прежде всего хотелось бы понять, различаются ли нейтринные осцилляции (превращение нейтрино в антинейтрино) между нейтрино и антинейтрино, - говорит поделившаяся вопросом Алисия Мэрино из Колорадского университета. - Ничего подобного до сих пор не наблюдалось, но мы надеемся на следующее поколение экспериментов».

    Теория всего

    Существует ли теория, которая объясняет значения всех фундаментальных физических констант? Существует ли теория, которая объясняет, почему законы физики таковы, как они есть?

    Для обозначения теории, которая бы объединила все четыре фундаментальные взаимодействия в природе.

    В течение двадцатого века было предложено множество «теорий всего», но ни одна из них не смогла пройти экспериментальную проверку, или существуют значительные затруднения в организации экспериментальной проверки для некоторых из кандидатов.

    Бонус: Шаровая молния

    Какова природа этого явления? Является ли шаровая молния самостоятельным объектом или подпитывается энергией извне? Все ли шаровые молнии имеют одну и ту же природу или существуют разные их типы?

    Шаровая молния - светящийся плавающий в воздухе огненный шар, уникально редкое природное явление.

    Единой физической теории возникновения и протекания этого явления к настоящему времени не представлено, также существуют научные теории, которые сводят феномен к галлюцинациям.

    Существуют около 400 теорий, объясняющих явление, но ни одна из них не получила абсолютного признания в академической среде. В лабораторных условиях похожие, но кратковременные явления удалось получить несколькими разными способами, так что вопрос о природе шаровой молнии остаётся открытым. По состоянию на конец XX века не было создано ни одного опытного стенда, на котором это природное явление искусственно воспроизводилось бы в соответствии с описаниями очевидцев шаровой молнии.

    Широко распространено мнение, что шаровая молния - явление электрического происхождения, естественной природы, то есть представляет собой особого вида молнию, существующую продолжительное время и имеющую форму шара, способного перемещаться по непредсказуемой, иногда удивительной для очевидцев траектории.

    Традиционно достоверность многих свидетельств очевидцев шаровой молнии остаётся под сомнением, в том числе:

    • сам факт наблюдения хоть какого-то явления;
    • факт наблюдения именно шаровой молнии, а не какого-то другого явления;
    • отдельные подробности явления, приводимые в свидетельстве очевидца.

    Сомнения в достоверности многих свидетельств осложняют изучение явления, а также создают почву для появления разных спекулятивно-сенсационных материалов, якобы связанных с этим явлением.

    По материалам: несколько десятков статей из

    Необходимо проверить качество перевода и привести статью в соответствие со стилистическими правилами Википедии. Вы можете помочь … Википедия

    В этой статье перечисляются некоторые из проблем в биологии, нерешённые по сей день. Широко известные проблемы Биологическое старение: Различные теории старения приводят разные причины того, почему оно происходит. Существуют генетические,… … Википедия

    I. Предмет и структура физики Ф. – наука, изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы, свойства и строение материи и законы её движения. Поэтому понятия Ф. и сё законы лежат в основе всего… … Большая советская энциклопедия

    Наука о сравнит, изучении культур, в амер. традиции часть или синоним культурной антропологии, в европейской (брит. и франц.) аналог социальной антропологии, в странах нем. языка самостоят. направление исследования. Базовая единица… … Энциклопедия культурологии

    Парадигма - (Paradigm) Определение парадигмы, история возникновения парадигмы Информация об определении парадигмы, история возникновения парадигмы Содержание Содержание История возникновения Частные случаи (лингвистика) Управленческая парадигма Парадигма… … Энциклопедия инвестора

    Модернизация - (Modernization) Модернизация это процесс изменения чего либо в соответствии с требованиями современности, переход к более совершенным условиям, с помощью ввода разных новых обновлений Теория модернизации, типы модернизации, органическая… … Энциклопедия инвестора

    ПЕТРОВ Михаил Константинович - (1924 1987) русский философ, культуролог, социолог, лингвист. Специально занимался проблемами науки о науке, в частности наукометрией, а также историей науки и социологией (по)знания. Особая область интересов П. тезаурусная динамика (в 1986 он… … Социология: Энциклопедия

    ИОАНН ПАВЕЛ II - К. Войтыла с родителями. Фотография. Нач. 20 х гг. XX в. К. Войтыла с родителями. Фотография. Нач. 20 х гг. XX в. (18.05.1920, Вадовице, близ Кракова, Польша 2.04.2005, Ватикан; до избрания папой Кароль Юзеф Войтыла), папа Римский (с 16 окт.… … Православная энциклопедия

    Византинология, отрасль ист. науки, изучающая историю и культуру Византии. Возникновение В. Интенсивные экономич., политич. и культурные связи Византии с различными странами Европы и Азии, высокий уровень развития визант. культуры, оказавшей… … Советская историческая энциклопедия

    Анатолий Иванович Гретченко (родился 30 января 1951, с. Мачеха, Волгоградская область) российский экономист, д.э.н.(1991), профессор (1993), заслуженный деятель науки РФ (2002), ректор Международного института Бизнес Тренинга. 1975г. окончил… … Википедия

    Книги

    • , Бережко Евгений Григорьевич. Книга написана на основе курса лекций по основам космической физики, который автор читал в течение ряда лет студентам физического факультета Северо-Восточного федерального университета (до…
    • Введение в физику космоса. Учебное пособие. Гриф УМО по классическому университетскому образованию , Бережко Евгений Григорьевич. Книга написана на базе курса лекций по основам космической физики, который автор читал в течение ряда лет студентам физического факультета Северо-Восточного федерального университета (до 2010…