Строение земной коры. Кора океаническая

Океаническая кора

1. Осадочный слой: от 0,5 км (срединная часть океана) до 15 км (материковый склон);

2. 1,5-2,0 км - подушечные лавы базальтов, подстилаемые долеритовыми дайками;

3. Мощность до 5 км - габбро, серпентиниты (основной состав). Плотность средняя 2,9 г/см3. Состав океанической коры - const. Образуется за счет выделения базальтовых расплавов из астеносферного слоя на дно океана в зонах срединно-океанического хребта.

Континентальная кора - отличается по мощности, от 20 км (островные дуги) - до 70 км (складчатые пояса). Состоит из трех слоев: 1) осадочный (от 0-15 км); 2) гранитный - (породы гранитного состава); 3) базальтовый слой. Наличие повышенного содержания радиоактивных элементов.

Химический состав Земной коры - Al-Si (легкоплавкие соединения). Из химических элементов - О - 46,6 %, Si - 27 %, Al - 8,7 %, Fe, Ca, Na, K, Mg, другие 90 элементов - 1,2 %.

Рис. 1 Литосфера и астеносфера, два типа земной коры.

Астеносфера - пластичная оболочка мантии, зона, где отсутствует жесткость (механические свойства отличаются от литосферы), преобладают высокие температуры и появляются первые проценты расплава, в геологическом времени обладает свойствами очень вязкой жидкости (рис.1).

Литосфера - жесткая внешняя оболочка земли, которая включает в себя земную кору и литосферную часть мантии (обладающими одинаковыми физическими свойствами), подстилается астеносферой.

Литосфера состоит из нескольких лиосферных плит (рис. 2), которые движутся друг относительно друга по астеносфере за счет конвективных течений в мантии. Это перемещение называется тектоникой плит. Тектоника плит отвечает за непрерывное изменение земной коры - породы непрерывно разрушаются и формируются в результате тектонической активности.

Рис. 2 Литосферные плиты

Тектоника плит

В 1915 г Альфред Вегенер (немецкий метеоролог) опубликовал теорию дрейфа континентов. Высказал гипотезу, что все ныне существующие материки были единым континентом Пангеей, состоящей их 2 частей: Лавразии (Европа, Азия без Индии, С.Америка) и Гондваны (Ю.Америка, Африка, Индостан, Австралия, Антарктида), разделенных океаном. 1) Очертания берегов Африки и Ю.Америки совпадают как мозаика. 2) Палеонтологические находки (окаменевшие остатки рептилии Т, растений и семян). 3) Оледенение, которое испытали 300 млн. лет назад Гондвана. Не было объяснения, почему движутся.

В 1928 г Артур Холмс и др. предположили наличие конвективных течений.

После войны открыт СОХ (составлена карта океанического дна) - точная линия совмещения континентов. Бурение океанического дна дало возможность изучить образцы базальтов океанической коры и определить возраст осадков. 140 млн. лет назад - литосферные плиты стали удаляться, образовавшиеся базальтовые расплавы в мантии изливались, образуя новую океаническую кору. Возраст пород увеличивается по мере удаления от СОХ.

В 60-е годы - открытие аномалий магнитного поля, от линии СОХ идет в обе стороны чередование положительных и отрицательных аномалий магнитного поля. СОХ - срединно-океанический хребет, цепи подводных гор высотой - 4000 м.

Наличие огненного кольца вулканов окружающее Тихий океан и эпицентры землетрясений - сосредоточены на границах литосферных плит.

Существует 3 типа границ между плитами:

Плиты удаляются друг от друга (обстановка спрединга);

Плиты движутся навстречу друг другу (обстановка коллизии);

Плиты перемещаются друг относительно друга в горизонтальной плоскости.

Рис. 3 Активные континентальные окраины (конвергентные плиты)

Плиты Наска и Ю.Америка - конвергентные (сближающиеся плиты) К - О. Океаническая погружается в мантию в зоне субдукции, т.к. плотность океанической коры больше чем континентальной, со >ск (рис. 3).

Рис. 4 Коллизия континентов

При коллизии плотности двух континентальных плит равны, поэтому погружения нет. Индия надвигается на Евразию - Тибет, Гималаи поднимаются до сих пор 1 см в год (рис. 4).

Рис. 5 Дивергентные плиты

Дивергентные - удаляющиеся плиты - СОХ, С.Американская и Евразийская, размер Исландии увеличивается 2см в год (рис.5).

Трансформные разломы - крупные сдвиги, которые пересекают всю литосферу. Разлом Сан - Андреас в Калифорнии является границей между Тихоокеанской и Северо-Американской плитами. Тихоокеанская движется к северо-западу относительно С.Американской со скоростью 5-6 см/год.

Вулканизм горячих точек - Гавайи. Остров Кауай за 5 млн. лет переместился на 600 км, т.е. Тихоокеанская плита перемещается относительно горячей точки со скоростью 11-12 см/год.

Горообразование (орогенез) - Анды, Северо-Американские Кордильеры, Каледониды, Альпы, Урал, Гималаи - складчатые пояса (формируются по границам литосферных плит). Также существуют континентальные щиты и стабильные платформы. Вулканические пояса (Анды) образуются над зонами субдукции. Самые высокие горные пояса возникают при столкновении континентальных плит (Гималаи). Сразу после формирования складчатые пояса начинают разрушаться: 1) эрозия, 2) орогенный коллапс (разрушение за счет гравитационных сил).

Методы изучения

Для изучения глубинных слоев земли применяют геофизические методы.

Изучение внутренних оболочек Земли основано на разнице скоростей сейсмических волн при прохождении разных по плотности сред.

На границе различных по плотности слоев происходит преломление и частичное отражение волны (пример с лампой и стеклом). Используют сейсмические волны, порождаемые землетрясениями или искусственными взрывами.

Верхняя часть земной коры - сверхглубокие скважины (12,6 км на Кольском п-ове), самая глубокая шахта - Южная Африка - 3,6 км.

Тепловой режим Земли.

Земная кора имеет 2 источника тепла - Солнце и распад радиоактивных веществ на границе с мантией.

В земной коре выделяют 3 температурные зоны.

1 - зона переменных температур до гл. 30 м, определяется климатом местности;

В зимний период образуется подзона промерзания, которая зависит от климата и типа горной породы и определяется по карте в СНиП, по формулам, по многолетним наблюдениям.

2 - зона постоянных температур до глубины (15-40 м) - среднегодовая Тє местности.

3 - зона нарастания температур - возрастает с глубиной в зависимости от геотермического градиента.

Геотермический градиент - величина возрастания t на каждые 100 м глубины, а глубина, при которой tє повышается на 1є С называется геотермическая ступень. Теоретически средняя величина этой ступени составляет 33 м.

– ограничена поверхностью суши или дном Мирового океана. Имеет она и геофизическую границу, которой является раздел Мохо . Граница характеризуется тем, что здесь резко нарастают скорости сейсмических волн. Установил её в $1909$ г. хорватский ученый А. Мохоровичич ($1857$-$1936$).

Земную кору слагают осадочные, магматические и метаморфические горные породы, а по составу в ней выделяется три слоя . Горные породы осадочного происхождения, разрушенный материал которых переотложился в нижние слои и образовал осадочный слой земной коры, покрывает всю поверхность планеты. В некоторых местах он очень тонкий и, возможно, прерывается. В других местах он достигает мощности нескольких километров. Осадочными являются глина, известняк, мел, песчаник и др. Образуются они путем осаждения веществ в воде и на суше, лежат обычно пластами. По осадочным породам можно узнать о существовавших на планете природных условиях, поэтому геологи их называют страницами истории Земли . Осадочные породы подразделяются на органогенные , которые образуются путем накопления останков животных и растений и неорганогенные , которые в свою очередь подразделяются на обломочные и хемогенные .

Обломочные породы являются продуктом выветривания, а хемогенные – результат осаждения веществ, растворенных в воде морей и озер.

Магматические породы слагают гранитный слой земной коры. Образовались эти породы в результате застывания расплавленной магмы. На континентах мощность этого слоя $15$-$20$ км, он совсем отсутствует или очень сильно сокращается под океанами.

Магматическое вещество, но бедное кремнеземом слагает базальтовый слой, имеющий большой удельный вес. Слой этот хорошо развит в основании земной коры всех областей планеты.

Вертикальная структура и мощность земной коры различны, поэтому выделяют несколько её типов. По простой классификации существует океаническая и материковая земная кора.

Материковая земная кора

Материковая или континентальная кора отличается от океанической коры толщиной и устройством . Континентальная кора расположена под материками, но её край не совпадает с береговой линией. С точки зрения геологии настоящим материком является вся площадь сплошной материковой коры. Тогда получается, что геологические материки больше географических материков. Прибрежные зоны материков, называемые шельфом – это есть временно залитые морем части материков. Такие моря как Белое, Восточно-Сибирское, Азовское – расположены на материковом шельфе.

В континентальной земной коре выделяются три слоя :

  • Верхний слой – осадочный;
  • Средний слой – гранитный;
  • Нижний слой – базальтовый.

Под молодыми горами такой тип коры имеет толщину$ 75$ км, под равнинами – до $45$ км, а под островными дугами – до $25$ км. Верхний осадочный слой материковой коры формируется глинистыми отложениями и карбонатами мелководных морских бассейнов и грубообломочными фациями в краевых прогибах, а также на пассивных окраинах континентов атлантического типа.

Вторгшаяся в трещины земной коры магма сформировала гранитный слой в составе которого есть кремнезем, алюминий и другие минералы. Толщина гранитного слоя может доходить до $25$ км. Слой этот очень древний и имеет солидный возраст – $3$ млрд. лет. Между гранитным и базальтовым слоем, на глубине до $20$ км, прослеживается граница Конрада . Она характеризуется тем, что скорость распространения продольных сейсмических волн здесь увеличивается, на $0,5$ км/сек.

Формирование базальтового слоя произошло в результате излияния на поверхность суши базальтовых лав в зонах внутриплитного магматизма. Базальты содержат больше железа, магния и кальция, поэтому они тяжелее гранита. В пределах этого слоя скорость распространения продольных сейсмических волн от $6,5$-$7,3$ км/сек. Там, где граница становится размытой, скорость продольных сейсмических волн растет постепенно.

Замечание 2

Общая масса земной коры от массы всей планеты составляет всего $0,473$ %.

Одну из первых задач, связанную с определением состава верхней континентальной коры, взялась решать молодая наука геохимия . Так как кора состоит из множества самых разнообразных пород, эта задача была весьма сложной. Даже в одном геологическом теле состав пород может сильно варьироваться, а в разных районах могут быть распространены разные типы пород. Исходя из этого, задача заключалась в определении общего, среднего состава той части земной коры, которая на континентах выходит на поверхность. Эту первую оценку состава верхней земной коры сделал Кларк . Он работал сотрудником геологической службы США и занимался химическим анализом горных пород. В ходе многолетних аналитических работ, ему удалось обобщить результаты и рассчитать средний состав пород, который был близок к граниту . Работа Кларка подверглась жесткой критике и имела противников.

Вторую попытку по определению среднего состава земной коры предпринял В. Гольдшмидт . Он предположил, что двигающийся по континентальной коре ледник , может соскребать и смешивать выходящие на поверхность породы, которые в ходе ледниковой эрозии будут отлагаться. Они то и будут отражать состав средней континентальной коры. Проанализировав состав ленточных глин, которые во время последнего оледенения отлагались в Балтийском море , он получил результат, близкий к результату Кларка. Разные методы дали одинаковые оценки. Геохимические методы подтверждались. Этими вопросами занимались, и широкое признание получили оценки Виноградова, Ярошевского, Ронова и др .

Океаническая земная кора

Океаническая кора расположена там, где глубина моря больше $ 4$ км, а это значит, что она занимает не все пространство океанов. Остальная площадь покрыта корой промежуточного типа. Кора океанического типа устроена не так, как континентальная кора, хотя тоже разделяется на слои. В ней практически совсем отсутствует гранитный слой , а осадочный очень тонкий и имеет мощность менее $1$ км. Второй слой пока еще неизвестен , поэтому его называют просто вторым слоем . Нижний, третий слой – базальтовый . Базальтовые слои континентальной и океанической коры похожи скоростями сейсмических волн. Базальтовый слой в океанической коре преобладает. Как говорит теория тектоники плит, океаническая кора постоянно формируется в срединно-океанических хребтах, потом она от них отходит и в областях субдукции поглощается в мантию. Это свидетельствует о том, что океаническая кора является относительно молодой . Наибольшее количество зон субдукции характерно для Тихого океана , где с ними связаны мощные моретрясения.

Определение 1

Субдукция – это опускание горной породы с края одной тектонической плиты в полурасплавленную астеносферу

В том случае, когда верхней плитой является континентальная плита, а нижней – океаническая – образуются океанические желоба .
Её толщина в разных географических зонах варьируется от $5$-$7$ км. С течением времени толщина океанической коры практически не изменяется. Связано это с количеством расплава, выделяющегося из мантии в срединно-океанических хребтах и толщиной осадочного слоя на дне океанов и морей.

Осадочный слой океанической коры небольшой и редко превышает толщину в $0,5$ км. Состоит он из песка, отложений останков животных и осажденных минералов. Карбонатные породы нижней части на большой глубине не обнаруживаются, а на глубине больше $4,5$ км карбонатные породы замещаются красными глубоководными глинами и кремнистыми илами.

Базальтовые лавы толеитового состава сформировали в верхней части базальтовый слой , а ниже лежит дайковый комплекс .

Определение 2

Дайки – это каналы, по которым базальтовая лава изливается на поверхность

Базальтовый слой в зонах субдукции превращается в экголиты , которые погружаются в глубину, потому что имеют большую плотность окружающих мантийных пород. Их масса составляет около $7$ % от массы всей мантии Земли. В пределах базальтового слоя скорость продольных сейсмических волн составляет $6,5$-$7$ км/сек.

Средний возраст океанической коры составляет $100$ млн. лет, в то время как самые старые её участки имеют возраст $156$ млн. лет и располагаются во впадине Пиджафета в Тихом океане. Сосредоточена океаническая кора не только в пределах ложа Мирового океана, она может быть и в закрытых бассейнах, например, северная впадина Каспийского моря. Океаническая земная кора имеет общую площадь $306$ млн. км кв.

Океанская кора. Длительное время океанская кора рассматривалась как двухслойная модель, состоящая из верхнего осадочного слоя и нижнего - "базальтового". В результате проведенных детальных сейсмических исследований бурения многочисленных скважин и неоднократных драгирований (взятие образцов пород со дна океана драгами) было значительно уточнено строение океанской коры. По современным данным, океанская земная кора имеет трехслойное строение при мощности от 5 до 9(12) км, чаще 6-7 км. Некоторое увеличение мощности наблюдается под океанскими островами.

1. Верхний, первый слой океанской коры - осадочный, состоит преимущественно из различных осадков, находящихся в рыхлом состоянии. Его мощность от нескольких сот метров до 1 км. Скорость распространения сейсмических волн (Vp) в нем 2,0-2,5 км/с.

2. Второй океанский слой, располагающийся ниже, по данным бурения, сложен преимущественно базальтами с прослоями карбонатных и кремнистых пород. Мощность его от 1,0-1,5 до 2,5-3,0 км. Скорость распространения сейсмических волн (Vp) 3,5-4,5 (5) км/с.

3. Третий, нижний высокоскоростной океанский слой бурением еще не вскрыт. Но по данным драгирования, проводимого с исследовательских судов, он сложен основными магматическими породами типа габбро с подчиненными ультраосновными породами (серпентинитами, пироксенитами). Его мощность по сейсмическим данным от 3,5 до 5,0 км. Скорость сейсмических волн (Vp) от 6,3-6,5 км/с, а местами увеличивается до 7,0 (7,4) км/с.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Океаническая кора примитивна по своему составу и, по существу, представляет собой верхний дифференцированный слой мантии, перекрытый сверху тонким слоем пелагических осадков. В океанической коре обычно выделяют три слоя, первый из них (верхний) осадочный.

В основании осадочного слоя часто залегают тонкие и не выдержанные по простиранию металлоносные осадки с преобладанием в них окислов железа. Нижняя часть осадочного слоя обычно сложена карбонатными осадками, отложившимися на глубинах менее 4-4,5 км. На больших глубинах карбонатные осадки, как правило, не отлагаются, поскольку слагающие их микроскопические раковины одноклеточных организмов (фораминифер и коколитофарид) при давлениях выше 400-450 атм легко растворяются в морской воде. По этой причине в океанических впадинах на глубинах больше 4-4,5 км верхняя часть осадочного слоя сложена в основном только бескарбонатными осадками - красными глубоководными глинами и кремнистыми илами. Возле островных дуг и вулканических островов в разрезе осадочной толщи часто встречаются линзы и прослои вулканогенных отложений, а вблизи дельт крупных рек - и терригенные осадки. В открытых океанах толщина осадочного слоя возрастает от гребней срединно-океанических хребтов, где осадков почти нет, к их периферийным частям. Средняя мощность осадков невелика и, по оценкам А.П. Лисицына, близка к 0,5 км, возле же континентальных окраин атлантического типа и в районах крупных речных дельт она возрастает до 10-12 км. Связано это с тем, что практически весь терригенный материал, сносимый с суши, благодаря процессам лавинной седиментации отлагается в прибрежных участках океанов и на материковых склонах континентов.

Второй, или базальтовый, слой океанической коры в верхней части сложен базальтовыми лавами толеитового состава. Изливаясь в подводных условиях, эти лавы приобретают причудливые формы гофрированных труб и подушек, поэтому они и называются подушечными лавами. Ниже располагаются долеритовые дайки того же толеитового состава, представляющие собой бывшие подводящие каналы, по которым базальтовая магма в рифтовых зонах изливалась на поверхность океанского дна. Базальтовый слой океанической коры обнажается во многих местах океанского дна, примыкающих к гребням срединно-океанических хребтов и оперяющих их трансформных разломов. Этот слой был подробно изучен как традиционными методами исследования океанского дна (драгирование, отбор проб грунтовыми трубками, фотографирование), так и с помощью подводных обитаемых аппаратов, позволяющих геологам наблюдать геологическое строение исследуемых объектов и проводить целенаправленный отбор образцов пород. Кроме того, за последние 20 лет поверхность базальтового слоя и верхние его слои были вскрыты многочисленными скважинами глубоководного бурения, одна из которых даже прошла слой подушечных лав и вошла в долериты лайкового комплекса. Общая мощность базальтового, или второго, слоя океанической коры, судя по сейсмическим данным, достигает 1,5, иногда 2 км.

Общая мощность океанической коры без осадочного слоя, таким образом, достигает 6,5-7 км. Снизу океаническая кора подстилается кристаллическими породами верхней мантии, слагающими подкоровые участки литосферных плит. Под гребнями срединно-океанических хребтов океаническая кора залегает непосредственно над очагами базальтовых расплавов, выделившихся из вещества горячей мантии (из астеносферы).

Площадь океанической коры приблизительно равна 3,06 1018 см2 (306 млн. км2), средняя плотность океанической коры (без осадков) близка к 2,9 г/см3, следовательно, массу консолидированной океанической коры можно оценить значением (5,8- 6,2) 1024 г. Объем и масса осадочного слоя в глубоководных котловинах мирового океана, по оценке А.П.Лисицына, составляет соответственно 133 млн км3 и около 0,М024 г. Объем осадков, сосредоточенных на шельфах и материковых склонах, несколько больший - около 190 млн. км3, что в пересчете на массу (с учетом уплотнения осадков) составляет примерно (0,4-0,45) 1024 г.

Океанское дно, представляющее собой поверхность океанической коры, имеет характерный рельеф.

Океаническая кора формируется в рифтовых зонах срединно-океанических хребтов за счет происходящей под ними сепарации базальтовых расплавов из горячей мантии (из астеносферного слоя Земли) и их излияния на поверхность океанического дна. Ежегодно в этих зонах поднимается из астеносферы, изливается на океанское дно и кристаллизуется не менее 5,5-6 км3 базальтовых расплавов, формирующих собой весь второй слой океанической коры (с учетом же слоя габбро объем внедряемых в кору базальтовых расплавов возрастает до 12 км3). Эти грандиозные тектономагматические процессы, постоянно развивающиеся под гребнями срединно-океанических хребтов, не имеют себе равных на суше и сопровождаются повышенной сейсмичностью.

В рифтовых зонах, расположенных на гребнях срединно-океанических хребтов, происходит растяжение и раздвижение дна океанов. Поэтому все такие зоны отмечаются частыми, но мелкофокусными землетрясениями с доминированием разрывных механизмов смещений. В противоположность этому под островными дугами и активными окраинами континентов, т.е. в зонах поддвига плит, обычно происходят более сильные землетрясения с доминированием механизмов сжатия и сдвига. По сейсмическим данным, погружение океанической коры и литосферы прослеживается в верхней мантии и мезосфере до глубин около 600- 700 км. По данным же томографии, погружение океанических литосферных плит прослежено до глубин около 1400-1500 км и, возможно, глубже - вплоть до поверхности земного ядра.

Океанскому дну присущи характерные и достаточно контрастные полосчатые магнитные аномалии, обычно располагающиеся параллельно гребням срединно-океанических хребтов. Происхождение этих аномалий связано со способностью базальтов океанского дна при остывании намагничиваться магнитным полем Земли, запоминая тем самым направление этого поля в момент их излияния на поверхность океанского дна.

«Конвейерный» механизм обновления океанского дна с постоянным погружением более древних участков океанической коры и накопившихся на ней осадков в мантию под островными дугами объясняет, почему за время жизни Земли океанические впадины так и не успели засыпаться осадками. Действительно, при современных темпах засыпки океанических впадин сносимыми с суши терригенными осадками 2,2 1016 г/год весь объем этих впадин, примерно равный 1,37 1024 см3, оказался бы полностью засыпанным приблизительно через 1,2 млрд. лет. Сейчас можно с большой уверенностью утверждать, что континенты и океанические бассейны совместно существуют около 3,8 млрд. лет и никакой значительной засыпки их впадин за это время не произошло.

Куда девается океаническая кора

Процесс исчезновения океана заключается не просто в осушении и воздымании океанского дна. Прежде всего уменьшается пространство, занимаемое океаном. На него давят сходящиеся континентальные глыбы, позади которых происходит зарождение и раскрытие молодых океанических впадин. Под нажимом соседних литосферных плит площадь старого океана начинает сокращаться, как шагреневая кожа. Куда же девается при этом древняя океаническая кора?

Исследование районов, некогда входивших в состав мезозойского Тетиса или составлявших его окраины, позволяет говорить о трех возможных вариантах трансформации коры океана. Наиболее универсальный и в то же время загадочный – это погружение в мантию вдоль зоны Беньофа, в процессе которого кора расплавляется и теряет свою индивидуальность. Этот компенсационный механизм в настоящее время работает в пределах активных континентальных окраин и островных вулканических дуг.

В современную эпоху уничтожается в основном кора самого древнего, Тихого океана, хотя в районах дуги моря Скоша, Малой Антильской дуги, а также Зондской и Никобарской дуг уничтожаются блоки коры Атлантического и Индийского океанов. Таким образом, речь идет о перманентном процессе, а не о механизме, который включался бы только на этапе замыкания и исчезновения океана.

Свидетельством поглощения океанической коры в зоне субдукции, происходившего многие миллионы лет назад, являются цепочки гранитоидных плутонов. Они образуются на месте вулканов, некогда поднимавшихся над зоной Беньофа. Так, на тихоокеанской окраине Южной Америки в составе Береговой Кордильеры находятся огромные по протяженности гранитные батолиты, самый крупный из них – Андийский. Установив положение и возраст подобных батолитов, отмечающих древнюю окраину океана, мы можем с уверенностью говорить о существовании здесь зоны Беньофа, в которой происходило поглощение океанической коры.

Другим свидетельством этого может служить обилие вулканических продуктов в осадочных толщах, сформировавшихся в период активной деятельности вулканов, в системе краевой дуги – островной или на континентальном субстрате. Однако все это лишь косвенные следы существования древнего океанского дна. Прямым доказательством могут считаться лишь реликты самой океанической коры – породы офиолитовой ассоциации, т. е. толеитовые базальты, гипербазиты, дайковый комплекс, отложения глубоководного генезиса.

Известно, что многие современные активные окраины осложнены асейсмичными хребтами, в составе которых находятся породы, содранные с погружающейся в зону Беньофа океанской плиты. Этот аккреционный комплекс нередко сохраняется при закрытии древнего океана, хотя в процессе воздымания и эрозии значительная часть этих образований может быть размыта. Правда, геологи еще не всегда способны идентифицировать породы аккреционного комплекса в разрезах древних пород. А ведь в аккреционном комплексе встречаются и фрагменты нижних слоев океанической коры. Так, на островах Калифорнийского бордерленда обнаружены крупные пластины гипербазитов и базальтов, измененных до различных ступеней метаморфизма. Подобные включения известны и на тихоокеанской окраине Камчатки. Здесь они создают бескорневые комплексы, обнажающиеся в районах камчатских мысов. Как правило, офиолиты, находящиеся в составе аккреционных поднятий, особенно древних, сильно деформированы. Многие породы могут быть изменены практически до неузнаваемости. Нередко они присутствуют лишь в виде меланжа – мелкого крошева из разнокалиберных обломков. Первичные структурные и текстурные признаки в них с трудом поддаются распознаванию.

Другой механизм перемещения океанической коры получил название обдукции. Обдуцированные пластины офиолитов мы находим преимущественно на пассивных окраинах материков. В отличие от субдукции, заключающейся в погружении океанической коры под континентальную, при обдукции фрагменты ложа океана помещаются на окраину континента. Наиболее известным примером обдукционного комплекса является Оманский офиолит – мощный комплекс глубоководных отложений, надвинутых на мелководные образования типично шельфового облика. Подобные чужеродные по отношению ко всему окружающему толщи определяются как аллохтоны. В состав Оманского аллохтона входят преимущественно турбидиты и радиоляриевые кремнистые отложения мезозойского возраста. Турбидиты имеют в основном карбонатный состав и образованы скелетными остатками организмов, обитавших на шельфе. Впрочем, в турбидитных разрезах встречаются и кварцевые песчаники. Все это – отложения континентального подножия, типичные для подводных конусов выноса.

В аллохтонной толще Хавасина выделяются турбидиты, отложенные вблизи и на удалении от континентального склона. Контакты между ними тектонические, т. е. они находятся в различных надвиговых пластинах и когда‑то располагались на значительном расстоянии друг от друга. Дистальные турбидиты, накапливавшиеся на удалении от древнего континентального склона, переслаиваются с красными радиоляриевыми кремнями или аргиллитами. Это образования, типичные для глубоководных областей океана.

В западных отрогах Оманских гор комплексы турбидитов и кремней перекрыты серией окремнелых известняков и красных кремней с горизонтами подушечных лав, а на востоке Омана – красными и зелеными радиоляриевыми кремнями и кремнистыми аргиллитами. Все это – образования древней абиссали, входившие в состав верхних слоев океанической коры. Их возраст меняется в широких пределах – от позднетриасового до раннемелового, т. е. соответствует предполагаемому возрасту океанского дна Тетис. Важным компонентом Оманского офиолита являются экзотические блоки мелководных пород, в основном триасовых рифовых известняков. Считается, что это обрушенные участки шельфовой карбонатной платформы, перемещенные к основанию древнего континентального склона.

Таким образом, породы Оманского офиолита, несомненно, представляют собой реликты первого и второго слоев океанической коры Тетис, надвинувшейся на край Афро‑Аравийского континентального блока. Время обдукции определено достаточно четко – маастрихтский век. Предполагают, что обдукция фрагментов ложа океана Тетис была вызвана столкновением Оманского выступа этого блока с островной вулканической дугой, которая находилась на северной, активной окраине океана. Этому предположению, однако, противоречит состав пород в аллохтонном комплексе Оманских гор. Как можно было убедиться, в них отсутствуют вулканогенные образования, а также полевошпатовые граувакки, столь характерные для современных вулканических дуг. Напротив, немногочисленные песчаники в турбидитах представлены кварцевыми разностями, которые типичны для пассивных окраин континентов.



Аллохтоны, подобные Оманскому, встречаются по северному обрамлению Афро‑Аравийской глыбы. Это Рифский массив на северной окраине Марокко и массив Троодос на Кипре. Подобные же обдукционные комплексы описаны на островах Куба, Новая Каледония, Ньюфаундленд и в других районах. Обдукция океанической коры на пассивную континентальную окраину или островной архипелаг обусловлена мощнейшими сжатиями в полосе схождения противолежащих континентальных окраин или островных дуг. Почему в данном случае происходит выдавливание океанической коры на Континент, а не ее поглощение в зоне субдукции? Ответ на этот вопрос пока не ясен.

Можно предположить, что поглощение океанической коры в зоне Беньофа протекает лишь при наличии перед фронтом активной континентальной окраины (или островной дуги) спредингового хребта, где продолжается воспроизводство коры океана. Другими словами, для субдукции необходимо встречное движение: с одной стороны, коры океана, выдвигающейся в спрединговом конвейере, с другой – континента, находящегося на краю более молодой литосферной плиты. Встречное движение приводит к появлению гигантской структуры скола: более пластичная и менее мощная пластина (океаническая) погружается под более массивную и жесткую (континентальную).

Если же в океане отсутствует срединно‑океанический рифт, иначе говоря, останавливается спрединговый конвейер, то сжатия на границе континентального и океанического блоков способствуют взламыванию хрупкой коры океана и ее выдавливанию в виде нескольких чешуй на континентальную окраину или островную дугу. Таким образом, обдукция имеет место лишь на этапе исчезновения, захлопывания древнего океана, когда он уже, по существу, «мертв», так как воспроизводство океанической коры в нем прекратилось.

Если эти рассуждения правильны, то в восточном рукаве океана Тетис в период схождения Афро‑Аравийского и Евразийского континентальных блоков уже прекратился спрединг океанского дна. Однако за обдукцией Оманского офиолита последовало вскоре новое раскрытие океана и, видимо, снова возник рифт, где начала формироваться молодая океаническая кора. Этот рифт, вероятно, существовал до последних дней океана Тетис, кора которого погружалась и расплавлялась в субдукционных зонах Загроса, Малого Кавказа и других районов между Евразией и Африкой.

Реликты древнего дна океана могут сохраниться и в виде так называемых мантийных окон. Под ними понимаются участки, целиком сложенные офиолитами. И хотя они находятся в аллохтонном залегании, т. е. были сорваны со своего первоначального места, тем не менее образуют единый блок. По существу, в этих окнах на поверхность выступают породы мантии, некогда прикрытые тонкой пленкой океанической коры. Речь идет о дислоцированном и смятом дне океанических впадин, зажатом между реликтами вулканических островных дуг и древним краем континента.

Мантийные окна, таким образом, характерны для сложнопостроенных зон перехода от материка к океану и обычно являются рудиментами исчезнувших окраинных морей. Участки подобного строения были описаны С. М. Тильманом на северо‑востоке СССР. По‑видимому, это наименее измененные блоки коры океанического типа, которые мы находим на континенте после исчезновения окраинных котловинных морей. Подобные же «окна» обнаруживаются и на месте древних океанов в тех зонах, где по каким‑либо причинам напряжения, вызванные всеобщим сжатием, на ряде участков оказались рассеянными. Поэтому коровые и подкоровые массы вещества, слагавшие дно океана, не были выдавлены и перемяты, а лишь сорваны со своих мантийных корней.

Становится очевидным, что, несмотря на хрупкость и неустойчивость во времени океанической коры, ее фрагменты удается обнаружить в пределах древних континентальных окраин, ныне впаянных в материковые мегаблоки. Следами существования океана являются реликты его древнего ложа, а также парагенезы пород, выделяемые в качестве геологических формаций. Среди них лучше сохраняются осадочные формации древних окраин континентов. Изучая их, можно узнать об этапах развития океанов, давно исчезнувших с лица Земли.