Соуэ расчет кабеля разных сечений. Потери в трансляционной линии соуэ

Потери электрической энергии в трансляционной линии приводят к уменьшению уровня звукового давления, развиваемого громкоговорителями или речевыми оповещателями и, соответственно, к уменьшению громкости звука передаваемых сигналов. Потери электрической энергии в трансляционной линии непосредственно связаны с сопротивлением проводов этой линии. Поэтому, выбранное сечение проводов сильно влияет на характеристики системы речевого оповещения и управления эвакуацией.

Закон Ома

Закон Ома позволяет нам отображать характеристики электрических цепей через взаимосвязь четырех основных компонент:

  • A — ток (в Амперах)
  • V — напряжение (в Вольтах)
  • R — сопротивление (в Омах)
  • P — мощность (в Ваттах)

Взаимосвязь этих компонент между собой показана на так называемом «классическом колесе» (смотри рисунок ниже)

Эта простая и удобная схема помогает нам понять фундаментальные взаимосвязи в электрических цепях. Электрические цепи, по которым передаются аудио-сигналы, не являются исключением.

Потери электрической энергии в линии передачи обусловлены сопротивлением проводов, из которых состоит эта линия. Наиболее наглядно это можно выразить через падение напряжения. Падение напряжения определяется следующим соотношением:

Vd = AL x RL

Vd – падение напряжения (в Вольтах)

AL – ток нагрузки (в Амперах)

RL – сопротивление линии (в Омах)

Для примера рассмотрим трансляционную линию длиной 150 метров, выполненную, например, кабелем КПСВВ 1х2х0,75, предназначенную для питания нагрузки мощностью 80Вт. В большинстве линий в системах радиотрансляции и в речевых системах оповещения используется напряжение 70В, мы будем использовать его как стандартное рабочее напряжение. 80Вт – это суммарная мощность, потребляемая всеми громкоговорителями, включенными в трансляционную линию, но не номинальная выходная мощность усилителя. Посмотрим на «классическое колесо» — там мы увидим, что сила тока (в Амперах) определяется делением мощности (в Ваттах) на напряжение (в Вольтах).

A = P / V

поэтому, для рассматриваемой нами трансляционной линии:

А = 80Вт / 70В = 1,14А

Итак, нам известен ток, который потребляет нагрузка мощностью 80Вт в трансляционной линии с напряжением 70В. Сопротивление линии – это просто сопротивление медного проводника на всей длине линии. Трансляционная линия, в которую включаются громкоговорители, состоит из двух проводников: один проводник идет к нагрузке, другой – возвращается от нагрузки к усилителю. Будем считать, что в нашем случае, эти проводники имеют одинаковую длину. Таблицы удельного сопротивления проводников доступны во многих справочниках. Мы воспользуемся данными, приведенными изготовителем кабеля КПСВВ: электрическое сопротивление шлейфа (двух жил пары) при температуре 20°С составляет 50 Ом/км. Умножая эту величину на длину рассматриваемой нами линии 0.15 км (150 м), получим, что общее сопротивление проводов в линии будет равно 7,5 Ом.

Подставив полученное значение в формулу для расчета величины падения напряжения, получим:

Vd = 1,14 А х 7,5 Ом = 8,55 В

Итак, падение напряжения в нашей трансляционной линии составляет 8.55 В. Это означает, что рабочее напряжении в линии, с которым нам приходится иметь дело, составляет всего лишь 61,45 В. Заметим, что в данном примере относительное падение напряжения в линии составляет 12.2% (уполномоченные надзорные органы допускают не более 10% падения напряжения в цепях сигнализации).

Потери можно выразить в децибелах (дБ) следующим образом:

SPL = 20 * Log (Vf / Vi )

Vf – рабочее напряжение в линии с подключенной нагрузкой

Vi – исходное напряжение

Результатом является отрицательное число, выражающее потери. Таким образом, для рассматриваемой нами линии:

SPL = 20 * Log (61,45 / 70) = -1,13 дБ

Если же мы применим провод КПСВВ 1х2х1,5, то результат будет следующим:

SPL = 20 * Log (65.76 / 70) = -0,54 дБ

Потери, обусловленные сопротивлением проводов, в этом случае составляют уже менее 1дБ и это дает полностью приемлемый результат. В большинстве случаев при строительстве трансляционных линий допускаются потери порядка 0.5дБ, обусловленные сопротивлением проводов. Следует заметить, что увеличение потерь в линии на 10дБ приводит к тому, что теряется половина громкости звука.

Марка кабеля

Сечение проводника, кв.мм

Удельное электрическое сопротивление шлейфа, Ом/км

Сопротивление линии, Ом

Падение напряжения, В

Относительное падение напряжения, %

Потери в линии, дБ

КПСВВ 1х2х0.5

КПСВВ 1х2х0.75

— 1.13

КПСВВ 1х2х1.0

ПРППМ 1х2х1.2

КПСВВ 1х2х1.5

— 0.54

Приведенные примеры в достаточно упрощенном виде показывают способы расчета трансляционной линии СОУЭ и причины потери качества и громкости оповещения в зависимости от параметров линии,
в реальной практике гораздо удобнее пользоваться соответствующей программой для автоматического расчета сетей оповещения и трансляции.

Кроме этого, согласно новых требований ныне действующих нормативных документов при открытой прокладке кабелей систем оповещения и управления эвакуацией следует применять огнестойкие кабели, соответствующие требованиям пожарной безопасности по нераспространению горения при пучковой прокладке, а также требованиям по огнестойкости, например, кабели марки КПСЭСнг-FRLS (FRHF) и др. Кабели марки КПСВВ и КПСВЭВ не поддерживают горение при единичной прокладке, кабели повышенной пожаробезопасности марки КПСВВнг и КПСВЭВнг – также не поддерживают горение при прокладке пучком.
В обоснованных случаях допускается прокладка обычных кабелей в пустотах строительных конструкций класса К0 или кабелями и проводами, прокладываемыми с использованием негорючих коробов и кабельных каналов.

Более подробная информация по вопросам проектирования СОУЭ представлена в разделе "Оповещение и эвакуация".

Скачать:
1. Программа по расчету длины трансляционной линии речевого оповещения – Пожалуйста или для доступа к этому контенту
2. Программа расчета сечения провода для линий оповещения — Пожалуйста или для доступа к этому контенту.

Проектируемое здание нужно оборудовать устройствами оповещения людей о пожаре по 2 типу.

Для оповещения людей о пожаре будут использоваться оповещатели типа «Маяк-12-3М» (ООО «Электротехника и Автоматика», Россия, г. Омск) и световые оповещатели «ТС-2 СВТ1048.11.110» (табло «Выход») подключенные к прибору С2000-4 (ЗАО НВП «Болид»).

Для сети оповещения при пожаре применяется огнестойкий кабель КПСЭнг(А)-FRLS-1х2х0,5.

Для эл. питания оборудования по напряжению U=12 В применяется источник резервированного эл. питания «РИП-12» исп.01 с аккумуляторной батареей емк. 7 А ч. Аккумуляторные батареи источника эл. питания обеспечивают работу оборудования в течение не менее 24 часов в дежурном режиме и 1 час в режиме «Пожар» при отключении основного источника эл.питания.

Основные требования к СОУЭ изложены в НПБ 104-03 «Системы оповещения и управления эвакуацией людей при пожарах в зданиях и сооружениях»:

3. Принятые расчетные допущения

Исходя из геометрических размеров помещений, все помещения делятся только на три типа:

  • «Коридор» -длина превышает ширину в 2 и более раз;
  • «Зал» — площадь более 40 кв.м. (в данном расчете не применяется).

В помещении типа «Комната» размещаем один оповещатель.

4. Таблица значений ослабления звукового сигнала

В воздушной среде звуковые волны затухают вследствие вязкости воздуха и молекулярного затухания. Звуковое давление ослабевает пропорционально логарифму расстояния (R) от оповещателя: F (R) = 20 lg (1/R). На рис.1 показан график ослабления звукового давления в зависимости от расстояния до источника звука F (R) =20 lg (1/R).


Рис. 1 — График ослабления звукового давления в зависимости от расстояния до источника звука F (R) =20 lg (1/R)

Для упрощения расчетов ниже приведена таблица реальных значений уровней звукового давления от оповещателя «Маяк-12-3М» на различных расстояниях.

Таблица — Звуковое давление, создаваемое одиночным оповещателем, при его включении на 12В на различном расстоянии от оповещателя.

5. Выбор количества оповещателей в конкретном типе помещений

На поэтажных планах обозначены геометрические размеры и площадь каждого помещения.

В соответствии с принятым ранее допущением, делим их на два типа:

  • «Комната» — площадь до 40 кв.м;
  • «Коридор» — длина превышает ширину в 2 и более раз.
  • В помещении типа «Комната» допускается размещение одного оповещателя.

    В помещении типа «Коридор» – будут размещаться несколько оповещателей, равномерно расположенные по помещению.

    Как результат – определение количества оповещателей в конкретном помещении.

    Выбор «расчётной точки» — точки на плоскости озвучивания в данном помещении, максимально удалённой от оповещателя, в которой необходимо обеспечить уровень звука не менее чем на 15 дБА выше допустимого уровня звука постоянного шума.

    Как результат – определение длины прямой, соединяющей точку крепления оповещателя с «расчётной точкой».

    Расчетная точка — точка на плоскости озвучивания в данном помещении, максимально удалённой от оповещателя, в которой необходимо обеспечить уровень звука не менее чем на 15 дБА выше допустимого уровня звука постоянного шума, согласно НПБ 104-03 п.3.15.

    На основании СНИП 23-03-2003 пункта 6 «Нормы допустимого шума» и приведённой там же «Таблицы 1» выводим значения допустимого уровня шума для общежития рабочих специалистов равно 60 дБ.

    При расчетах следует учитывать ослабление сигнала при прохождении через двери:

    • противопожарные -30 дБ(А);
    • стандартные -20 дБ(А)

    Условные обозначения

    Примем следующие условные обозначения:

    • Н под. – высота подвеса оповещателя от пола;
    • 1,5м — уровень 1,5 метра от пола, на этом уровне находится плоскость озвучивания;
    • h1 — превышение над уровнем 1,5 м до точки подвеса;
    • Ш — ширина помещения;
    • Д — длина помещения;
    • R — расстояние от оповещателя до «расчётной точки»;
    • L — проекция R (расстояние от оповещателя до уровня 1,5 м на противоположной стене);
    • S — площадь озвучивания.

    5.1 Расчет для помещения типа «Комната»

    Определим «расчётную точку» — точку, максимально удалённую от оповещателя.

    Для подвеса выбираются «меньшие» стены, противостоящие по длине помещения, в соответствии с НПБ 104-03 в п. 3.17.

    Рис. 2 — Вертикальная проекция крепления настенного оповещателя по НПБ

    Оповещатель располагаем по середине «Комнаты» — по центру короткой стороны, как изображено на рис.3

    Рис. 3 — Расположение оповещателя по середине «Комнаты»

    Для того, чтобы вычислить размер R, необходимо применить теорему Пифагора:

    • Д – длина комнаты, в соответствии с планом равна 6,055 м;
    • Ш – ширина комнаты, в соответствии с планом равна 2,435 м;
    • Если оповещатель будет размещаться выше 2,3 м, то вместо 0,8 м, нужно взять размер h1 превышающий высоту подвеса над уровнем 1,5 м.

    5.1.1 Определяем уровень звукового давления в расчетной точке:

    Р = Рдб + F (R)=105+(-15,8)=89,2 (дБ)

    • Pдб – звуковое давление громкоговорителя, согласно тех. информации на оповещатель «Маяк-12-3М» равнo 105 дБ;
    • F (R) – зависимость звукового давления от расстояния, равна -15,8 дБ в соответствии с рис.1 когда R=6,22 м.

    5.1.2 Определяем величину звукового давления, в соответствии с НПБ 104-03 п.3.15:

    5.1.3 Проверка правильности расчета:

    Р =89,2 > Р р.т.=75 (условие выполняется)

    СОУЭ в защищаемом помещении.

    5.2 Расчет для помещения типа «Коридор»

    Оповещатели размещаются на одной стене коридора с интервалом в 4-ре ширины. Первый размещаются на расстоянии ширины от входа. Общее количество оповещателей исчисляется по формуле:

    N = 1 + (Д – 2*Ш) / 3*Ш= 1+(26,78-2*2,435)/3*2,435=4 (шт.)

    • Д – длина коридора, в соответствии с планом равна 26,78 м;
    • Ш – ширина коридора, в соответствии с планом равна 2,435 м.

    Количество округляется до целого значения в большую сторону. Размещение оповещателей представлено на рис. 4.

    Рис.4 — Размещение оповещателей в помещении типа «Коридор» при ширине менее 3-х метров и расстояние «до расчётной точки»

    5.2.1 Определяем расчётные точки:

    «Расчётная точка», находится на противоположной стене на удалении в две ширины от оси оповещателя».

    5.2.2 Определяем уровень звукового давления в расчетной точке:

    Р = Рдб + F (R)=105+(-14,8)=90,2 (дБ)

    • Pдб – звуковое давление громкоговорителя, согласно тех. информации на оповещатель «Маяк-12-3М» равно 105 дБ;
    • F (R) – зависимость звукового давления от расстояния, равна -14,8 дБ в соответствии с рис.1 когда R=5,5 м.

    5.2.3 Определяем величину звукового давления, в соответствии с НПБ 104-03 п.3.15:

    Р р.т. = N + ЗД =60+15=75 (дБ)

    • N – допустимый уровень звука постоянного шума, для общежитий равна 75 дБ;
    • ЗД – запас звукового давления, равный 15 дБ.

    5.2.4 Проверка правильности расчета:

    Р=90,2 > Р р.т=75 (условие выполняется)

    Таким образом, в результате расчетов, выбранный тип оповещателя «Маяк-12-3М» обеспечивает и превышает значение звукового давления, тем самым обеспечивая четкую слышимость звуковых сигналов СОУЭ в защищаемом помещении.

    В соответствии с расчетом, выполним расстановку звуковых оповещателей см. рис.5.

    Рис.5 — План размещения оповещателей на отм. 0.000

При проектировании и монтаже систем оповещения и управления эвакуацией (СОУЭ) требуется выдержать норматив по максимальному падению напряжения на оповещателях. Ввиду того, что линии питания таких систем часто представляют собой сложную разветвлённую древообразную структуру, расчёт падения напряжения в линии является довольно трудоёмкой задачей.

Методика расчёта

Расчёт производится в следующей последовательности:

  • Зная длину и диаметр кабеля, сопротивление оповещателей, начиная с конечных элементов «дерева» последовательно поднимаясь вверх рассчитать сопротивление в каждом узле (распределительной коробке) и перед каждым оповещателем, что по сути тоже можно рассматривать как узел.
  • Действуя таким образом можно рассчитать общее сопротивление нашего «дерева» в точке подключения к источнику напряжения.
  • Теперь, зная общее сопротивление и напряжение источника, опускаясь последовательно вниз до конечных элементов «дерева», можно рассчитать силу тока и напряжение в каждом узле.

Пример расчёта

Рассмотрим пример. Для упрощения возьмем оповещатели одинакового сопротивления R ОП и все участки линии равных длин и сечений (Рис. 1). Таким образом, сопротивление каждого участка провода будет равно:

В узлах В 1.2 и В 2.1 параллельно оповещателям BIAS 1.3 и BIAS 2.2 подсоединяются последовательно соединенные оповещатель с двумя проводами. Тогда сопротивление нагрузки в узлах В 1.2 и В 2.1 будет равно:

Теперь, зная общее сопротивление R и напряжение источника U , можно рассчитать силу тока, напряжение и падение напряжения в каждом узле.

(7)
I A =I (8)
U A =I A ·R A (9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)

Сила тока на каждом оповещателе находится делением напряжения на соответствующем узле на сопротивление оповещателя:

(21)

Примем напряжение источника U=12 В, сопротивление оповещателей R ОП = 133 Ом, длина участков линии 10 м, сечение провода 1 мм 2 . Последовательно выполняя вычисления, мы получаем следующие результаты:

R п = 0,172 Ом;

R 1.3 = R 2.2 = 133 Ом;

R 1.2 = R 2.1 = 66,586 Ом;

R 1.1 = 44,524 Ом;

R А = 26,861 Ом;

R = 27,205 Ом;

I = I A = 0,441 A;

I 1.1 = 0,264 A;

U 1.1 = 11,757 B;

ΔU 1.1 = 2,022 %;

I ОП1.1 = 0,0884 А;

I 1.2 = 0,176 A;

U 1.2 = 11,697 B;

ΔU 1.2 = 2,525 %;

I ОП1.2 = 0,0879 А;

I 1.3 = 0,088 A;

U 1.3 = 11,667 B;

ΔU 1.3 = 2,777 %;

I ОП1.3 = 0,0877 А;

I 2.1 = 0,177 A;

U 2.1 = 11,787 B;

ΔU 2.1 = 1,772 %;

I ОП2.2 = 0,0886 А;

I 2.2 = 0,088 A;

U 2.2 = 11,757 B

ΔU 2.2 = 2,025 %;

I ОП2.2 = 0,0884 А.

Результаты расчёта

Результаты расчёта показывают, что максимальное падение напряжения будет на оповещателе BIAS 1.3 и составит 0,333 вольта или 2,777 %.

Как видно из этого примера, даже в такой простой конфигурации из пяти оповещателей с одинаковыми длинами и сечениями кабелей, расчёт падения напряжения получается довольно сложным и громоздким. Поэтому мало кто из проектировщиков производит такие расчёты, сечения кабелей зачастую меньше необходимых, а ошибки проектирования обычно выявляются на этапе пуско-наладочных работ и ложатся в итоге на плечи монтажных организаций.

Автоматизация расчёта

Для ускорения и упрощения расчётов нами разработана программа, которая позволяет производить расчёты падения напряжения в линии оповещения с любой конфигурацией и любым количеством оповещателей, которая доступна для скачивания .

Она позволит проектировщикам произвести расчёты на этапе разработки, а монтажникам самостоятельно оценить падение напряжения на оповещателях до начала монтажа и, если необходимо, вовремя скорректировать проект. Расчёт производится при температуре кабеля 20 ºС, сопротивление меди — 0,0172 ом/м/мм².

Уронов Л.Г.

Виноградова И.Ю.

ООО «ТехноСфера», 2016 г.

Конец лета - самая жаркая пора отпусков. Идешь по главной улице приморского городка - вокруг множество кафе, ресторанчиков, магазинов к удовольствию отдыхающих. Большинство из них с точки зрения организации систем оповещения относятся к малым и средним объектам (если заведение не расположено в каком-либо торгово-развлекательном центре весьма внушительных размеров). ТРЦ обычно укомплектованы по всем правилам, в том числе и по небезызвестным СП 3.13130.2009, и с оповещением там более или менее все ясно - применяются специализированные системы в комбинации со 100-вольтовыми линиями и громкоговорителями. С небольшими объектами все не так просто

Роман Мишин
Технический директор компании Schneider Intercom

Обычно владельцы даже самых маленьких заведений имеют в своем распоряжении какое-нибудь звуковоспроизводящее устройство, основной целью которого является создание приятной звуковой атмосферы в помещении. Немного реже аудиотехника применяется и для привлечения внимания прохожих. Вопрос в том, могут ли подобные устройства использоваться для оповещения и информирования посетителей, в том числе и в аварийных ситуациях?

Сложность простых систем

Кажется, что видимых на первый взгляд препятствий на пути применения аудиотехники в целях обеспечения безопасности нет - была бы только возможность подключения микрофона и вход для подключения источника внешних звуковых сигналов. Но лишь на первый взгляд всетаклегко.

Первая проблема - это ограниченная возможность применения, связанная с тем, что практически все подобные системы до недавнего времени не оснащались устройствами обеспечения автоматического включения при тревожном событии и сертифицировать аудиосистему в качестве СОУЭ по требованиям ГОСТ Р 53325 просто невозможно Исходя из этого, область применения сужается до небольших магазинов или иных помещений, для которых внедрение таких систем вообще необязательно. Тем не менее многие владельцы небольших заведений используют аудиосистемы с низкоомным подключением не только для трансляции музыки, но и для подачи объявлений.

Идем дальше. Допустим низкоомная система или усилитель все же имеют все необходимые средства для применения их в качестве устройств оповещения (такие хотя и немногочисленные устройства все же имеются на рынке). Как правило, это небольшие аудиосистемы, и в подавляющем большинстве случаев количество громкоговорителей в них ограничивается несколькими единицами. Но само по себе малое количество динамиков не может служить препятствием. Проблема кроется в другом: при низкоомном подключении сигнал в линии громкоговорителей, конечно, может достигать весьма значительных мгновенных величин по напряжению, но усредненное значение этого параметра очень и очень мало. Как следствие, требуется хорошее экранирование для ослабления внешних электрических наводок, иначе при длине линии более 1 5 м и присутствии рядом силовых кабелей или электротехнического оборудования звук станет ощутимо хуже. Но и это еще не все.

Как известно, потери в линии при ненулевом ее сопротивлении обратно пропорциональны величине напряжения в ней. Таким образом, при низком напряжении неизбежно сильное ослабление полезного сигнала даже при небольшом расстоянии от источника до потребителя. Для снижения потерь необходимо или уменьшить это расстояние, или снизить сопротивление путем увеличения сечения проводов, питающих громкоговоритель.

Оба способа накладывают жесткие ограничения на использование обычных аудиосистем для целей трансляции и оповещения. В качестве иллюстрации приведем методику расчета минимального сечения кабеля подключения громкоговорителей в аудиосистемах.

Как рассчитать сечение кабеля

Для системы оповещения расчет сечения кабеля линии при заданной длине ведется для заданного допустимого значения падения напряжения в линии (ипад) последующим параметрам:

  • напряжение в линии - U;
  • длина линии - L;
  • потребляемая мощность - Р.

Величина падения напряжения:

где I -ток в линии.

где - удельное сопротивление материала (для меди - 0,0175 Ом-мм2/м):

Отсюда находим выражение для расчета сечения кабеля:

В случае, когда необходимо вычислить максимальную протяженность линии, зная сечение используемого кабеля и заданное падение напряжения, применяется следующая формула:

Из приведенных формул явно видно: чем выше напряжение в линии, тем меньшее сечение кабеля требуется для создания линии определенной длины и тем более длинную линию оповещения можно организовать при известном сечении кабеля.

Ограничения низковольтных систем

Казалось бы, все ясно: предел использования низковольтных систем - небольшие объекты площадью несколько десятков квадратных метров. Однако низковольтные системы имеют еще один недостаток, дополнительно ограничивающий область их использования. Они, за редким исключением, не имеют возможности контроля исправности линии, и тем более отдельного динамика. Отсутствие такой возможности - это не стремление удешевить аппаратуру, а принципиальная особенность.

Все современные способы контроля используют в той или иной мере пропускание специального сигнала по линии громкоговорителей во время трансляции. В низковольтной цепи такой сигнал - сравнимый с амплитудой полезного сигнала - способен вызвать чувствительные нежелательные эффекты. Да и к чему эта возможность, ведь низковольтные аудиосистемы, как правило, оснащаются низкоомными динамиками, а их необходимо правильно подключить, причем учитывая, что сопротивление выходного каскада оконечного усилителя равно сопротивлению одной акустической системы. При таких обстоятельствах много громкоговорителей, как ни старайся, не подключишь.

Учитывая особенности низковольтных систем, описанные выше, поясним, почему их нежелательно использовать в качестве трансляционных устройств даже для весьма небольших заведений и почему недавно появились трансляционные системы, специально предназначенные для малых и средних объектов.

Типичный подход

Поскольку даже в малом магазинчике или кофейне есть по крайней мере две акустически разделенные зоны (клиентская и технологическая), то одним громкоговорителем не обойдешься.

Иногда выходят из положения следующим образом: одну колонку стереосистемы размещают в клиентской зоне - другую в технологической. Конечно же, это не совсем правильно, поскольку, во-первых, очень сильно искажается звучание стерео про грамм, а во-вторых, если вы находитесь в одной из зон, не всегда понятно (при отсутствии контроля линии), работает ли колонка в другом помещении. К тому же и 10 м для низковольтной системы - расстояние, способное весьма испортить качество воспроизведения и разборчивость речи. Последнее обстоятельство в решающий момент может дорого обойтись владельцу заведения.

Специальные решения для небольших объектов

Благодаря развитию технологий и культуры ведения бизнеса в передовых странах на российском рынке появились недорогие трансляционные системы, специально предназначенные для малых и средних объектов. Они позволяют оборудовать заведение более чем двумя колонками, создавать равномерное комфортное звуковое поле и соблюдать требования норм по громкости и разборчивости объявлений.

Для сведения к минимуму пространственных искажений в таких системах используется только монофонический звук, а для уменьшения потерь сигнала - высоковольтные линии оповещения с трансформаторным питанием громкоговорителей. Такое оборудование имеет возможность функционального контроля за линиями громкоговорителей и основными элементами системы, однако глубина этого контроля зависит от класса системы и возможностей производителя.

1. Для малых систем, как правило, ограничиваются только контролем усилителя и неразветвленных линий оповещения.

2. В настоящее время часто используется метод, при котором возможно постоянное наблюдение за линией путем периодического пропускания специального сигнала - так называемого пилоттона, неслышного для пользователей системы с последующим измерением разницы уровня сигнала. При превышении некоторого порогового значения этой разницы выдается сигнал о неисправности линии. Такой способ зарекомендовал себя как весьма простой и надежный и взят на вооружение большинством производителей трансляционного оборудования.

3. Системы рангом повыше имеют средства контроля, позволяющие отслеживать неисправности вплоть до отдельного динамика. Конечно, это требует не только ресурсов центрального оборудования, но и установки специальных модулей, наблюдающих за ветвью линии и отдельным громкоговорителем. Поскольку и отдельные ветви, и тем более динамики включаются в основную линию параллельно, то при отказе одной из ветвей или отдельного громкоговорителя условия прохождения сигнала по основной линии мало изменятся и простая система контроля по изменению общего сопротивления линии или по ослаблению сигнала попросту не сработает. Налицо необходимость оснащения дополнительными модулями контроля.

Помимо резкого удорожания такой системы, увеличиваются затраты на монтаж и настройку. Потребуется и более высокая квалификация монтажного и обслуживающего персонала И наконец, самое главное - с ростом числа элементов системы повышается вероятность возникновения неисправности. Поэтому модули контроля, устанавливаемые в линию, обязаны иметь высочайшую надежность, что, несомненно, сказывается на цене. Но все же полностью исключить возникновение отказа по вине элементов наблюдения и контроля нельзя.

Оповещение нового поколения

Совсем недавно вследствие развития технологий передачи аудиоданных на рынке появились системы с новой архитектурой. Они позволяют строить относительно дешевые распределенные системы оповещения масштаба торгово-развлекательного центра, кампуса, улицы или даже небольшого населенного пункта. К тому же можно, не нарушая целостности, дробить такую систему на множество логически независимых малых.

Суть нового подхода такова: от центрального контроллера системы прокладываются линии цифровой передачи сигнала, причем и аудио, и сигнализация, и команды управления передаются всего по двум проводам или сетевой IP-инфраструктуре. Абонентами системы являются как вызывные станции, так и усилители, имеющие полные возможности функционального контроля. Естественно, абоненты могут работать как сообща, так абсолютно независимо, благодаря логическому разделению сегментов подобной системы. Это значит, что в штатном режиме каждый из таких сегментов может транслировать свою музыку или объявления, а при возникновении общей чрезвычайной ситуации все устройства могут получать сигнал от главного оператора или от региональной системы оповещения. Поскольку в каждом сегменте располагается только абонентское оборудование (вызывная станция, усилители и громкоговорители), владельцы небольших заведений могут быть избавлены от необходимости покупать собственную систему - теперь есть возможность использовать общую систему как абонентский сервис, подобно подзабытым радиоточкам. При этом в штатном режиме в каждом заведении (абонентской зоне) транслируется своя музыка и объявления.

Как говорится, новое - это хорошо забытое старое, и технология, некогда созданная для радиотрансляционной сети репродукторов, с учетом современного развития открывает бизнесу новые возможности.