Школьный курс математики: почему нельзя делить на ноль в школе? Почему на нуль делить нельзя?Только подробно.

«Делить на ноль нельзя!» - большинство школьников заучивает это правило наизусть, не задаваясь вопросами. Все дети знают, что такое «нельзя» и что будет, если в ответ на него спросить: «Почему?» А ведь на самом деле очень интересно и важно знать, почему же нельзя.

Всё дело в том, что четыре действия арифметики - сложение, вычитание, умножение и деление - на самом деле неравноправны. Математики признают полноценными только два из них - сложение и умножение. Эти операции и их свойства включаются в само определение понятия числа. Все остальные действия строятся тем или иным образом из этих двух.

Рассмотрим, например, вычитание. Что значит 5 – 3 ? Школьник ответит на это просто: надо взять пять предметов, отнять (убрать) три из них и посмотреть, сколько останется. Но вот математики смотрят на эту задачу совсем по-другому. Нет никакого вычитания, есть только сложение. Поэтому запись 5 – 3 означает такое число, которое при сложении с числом 3 даст число 5 . То есть 5 – 3 - это просто сокращенная запись уравнения: x + 3 = 5 . В этом уравнении нет никакого вычитания. Есть только задача - найти подходящее число.

Точно так же обстоит дело с умножением и делением. Запись 8: 4 можно понимать как результат разделения восьми предметов по четырем равным кучкам. Но в действительности это просто сокращенная форма записи уравнения 4 · x = 8 .

Вот тут-то и становится ясно, почему нельзя (а точнее невозможно) делить на ноль. Запись 5: 0 - это сокращение от 0 · x = 5 . То есть это задание найти такое число, которое при умножении на 0 даст 5 . Но мы знаем, что при умножении на 0 всегда получается 0 . Это неотъемлемое свойство нуля, строго говоря, часть его определения.

Такого числа, которое при умножении на 0 даст что-то кроме нуля, просто не существует. То есть наша задача не имеет решения. (Да, такое бывает, не у всякой задачи есть решение.) А значит, записи 5: 0 не соответствует никакого конкретного числа, и она просто ничего не обозначает и потому не имеет смысла. Бессмысленность этой записи кратко выражают, говоря, что на ноль делить нельзя.

Самые внимательные читатели в этом месте непременно спросят: а можно ли ноль делить на ноль? В самом деле, ведь уравнение 0 · x = 0 благополучно решается. Например, можно взять x = 0 , и тогда получаем 0 · 0 = 0 . Выходит, 0: 0 = 0 ? Но не будем спешить. Попробуем взять x = 1 . Получим 0 · 1 = 0 . Правильно? Значит, 0: 0 = 1 ? Но ведь так можно взять любое число и получить 0: 0 = 5 или 0: 0 = 317 и т. д.

Но если подходит любое число, то у нас нет никаких оснований остановить свой выбор на каком-то одном из них. То есть мы не можем сказать, какому числу соответствует запись 0: 0 . А раз так, то мы вынуждены признать, что эта запись тоже не имеет смысла. Выходит, что на ноль нельзя делить даже ноль. (В математическом анализе бывают случаи, когда благодаря дополнительным условиям задачи можно отдать предпочтение одному из возможных вариантов решения уравнения 0 · x = 0 ; в таких случаях математики говорят о «раскрытии неопределенности», но в арифметике таких случаев не встречается.)

Вот такая особенность есть у операции деления. А точнее - у операции умножения и связанного с ней числа ноль.

Ну, а самые дотошные, дочитав до этого места, могут спросить: почему так получается, что делить на ноль нельзя, а вычитать ноль можно? В некотором смысле, именно с этого вопроса и начинается настоящая математика. Ответить на него можно только познакомившись с формальными математическими определениями числовых множеств и операций над ними. Это не так уж сложно, но почему-то не изучается в школе. Зато на лекциях по математике в университете вас в первую очередь будут учить именно этому.

Александр Сергеев

Комментарии: 0

    Вашему вниманию предлагается исследовательская программа, последовательно возрождающая неопифагорейскую философию в теоретической физике и основанная на убеждении в неслучайности физических законов, в существовании единого первичного принципа, определяющего структуру (видимого и невидимого) Мира и записанного на абстрактном математическом языке, на языке Чисел (целых, действительных и, возможно, их обобщений).

    Арнольд В. И.

    Популярная лекция, в том виде, в каком Владимир Игоревич Арнольд прочитал ее 13 мая 2006 года в концертном зале «Академический» по приглашению фонда «Династия». Эту лекцию, как уверяет сам академик Арнольд, может понять даже школьник.

    Кажется, ХХ век прошёл не зря. Сначала люди создали на миг второе Солнце, взорвав водородную бомбу. Потом они прогуливались по Луне и, наконец, доказали пресловутую теорему Ферма. Из этих трёх чудес первые два у всех на слуху, ибо они вызвали огромные социальные последствия. Напротив, третье чудо выглядит очередной учёной игрушкой - в одном ряду с теорией относительности, квантовой механикой и теоремой Гёделя о неполноте арифметики. Впрочем, относительность и кванты привели физиков к водородной бомбе, а изыскания математиков наполнили наш мир компьютерами. Продолжится ли этот ряд чудес в XXI веке? Можно ли проследить связь между очередными учёными игрушками и революциями в нашем быту? Позволяет ли эта связь делать успешные предсказания? Попробуем понять это на примере теоремы Ферма.

    Александров П. С., Маркушевич А. И., Хинчин А. Я.

    Сборник книг предназначается для людей, изучавших элементарную математику и уже ставших или готовящихся стать преподавателями элементарной математики. Логика нашего издания - это логика систематического, по возможности простого и доступного изложения тех вопросов математической науки, из которых строится школьный курс, а также и тех, которые хотя и не находят в этом курсе прямого выражения, однако необходимы для правильного и сознательного его понимания и создают перспективы для дальнейшего развития содержания и методов школьного курса.

    Владимир Кассандров

    Программа Гордона

    Существует ли единый «Код Природы»? Может ли число порождать свет, а свет - материю? В чем суть основных принципов «неопифагорейского» подхода к построению физических теорий? О «реке времени» и частицах как точках «сгущения» первичных световых потоков - физик Владимир Кассандров.

Почему нельзя делить на ноль? April 16th, 2018

Итак, недавно мы обсуждали . А вот еще интересное утверждение. «Делить на ноль нельзя!» - большинство школьников заучивает это правило наизусть, не задаваясь вопросами. Все дети знают, что такое «нельзя» и что будет, если в ответ на него спросить: «Почему?». Вот что будет, если

А ведь на самом деле очень интересно и важно знать, почему же нельзя.

Всё дело в том, что четыре действия арифметики - сложение, вычитание, умножение и деление - на самом деле неравноправны. Математики признают полноценными только два из них - сложение и умножение. Эти операции и их свойства включаются в само определение понятия числа. Все остальные действия строятся тем или иным образом из этих двух.

Рассмотрим, например, вычитание. Что значит 5 – 3? Школьник ответит на это просто: надо взять пять предметов, отнять (убрать) три из них и посмотреть, сколько останется. Но вот математики смотрят на эту задачу совсем по-другому. Нет никакого вычитания, есть только сложение. Поэтому запись 5 – 3 означает такое число, которое при сложении с числом 3 даст число 5. То есть 5 – 3 - это просто сокращенная запись уравнения: x + 3 = 5. В этом уравнении нет никакого вычитания. Есть только задача - найти подходящее число.

Точно так же обстоит дело с умножением и делением. Запись 8: 4 можно понимать как результат разделения восьми предметов по четырем равным кучкам. Но в действительности это просто сокращенная форма записи уравнения 4 · x = 8.

Вот тут-то и становится ясно, почему нельзя (а точнее невозможно) делить на ноль. Запись 5: 0 - это сокращение от 0 · x = 5. То есть это задание найти такое число, которое при умножении на 0 даст 5. Но мы знаем, что при умножении на 0 всегда получается 0. Это неотъемлемое свойство нуля, строго говоря, часть его определения.

Такого числа, которое при умножении на 0 даст что-то кроме нуля, просто не существует. То есть наша задача не имеет решения. (Да, такое бывает, не у всякой задачи есть решение.) А значит, записи 5: 0 не соответствует никакого конкретного числа, и она просто ничего не обозначает и потому не имеет смысла. Бессмысленность этой записи кратко выражают, говоря, что на ноль делить нельзя.

Самые внимательные читатели в этом месте непременно спросят: а можно ли ноль делить на ноль? В самом деле, ведь уравнение 0 · x = 0 благополучно решается. Например, можно взять x = 0, и тогда получаем 0 · 0 = 0. Выходит, 0: 0=0? Но не будем спешить. Попробуем взять x = 1. Получим 0 · 1 = 0. Правильно? Значит, 0: 0 = 1? Но ведь так можно взять любое число и получить 0: 0 = 5, 0: 0 = 317 и т. д.

Но если подходит любое число, то у нас нет никаких оснований остановить свой выбор на каком-то одном из них. То есть мы не можем сказать, какому числу соответствует запись 0: 0. А раз так, то мы вынуждены признать, что эта запись тоже не имеет смысла. Выходит, что на ноль нельзя делить даже ноль. (В математическом анализе бывают случаи, когда благодаря дополнительным условиям задачи можно отдать предпочтение одному из возможных вариантов решения уравнения 0 · x = 0; в таких случаях математики говорят о «раскрытии неопределенности», но в арифметике таких случаев не встречается.)

Вот такая особенность есть у операции деления. А точнее - у операции умножения и связанного с ней числа ноль.

Ну, а самые дотошные, дочитав до этого места, могут спросить: почему так получается, что делить на ноль нельзя, а вычитать ноль можно? В некотором смысле, именно с этого вопроса и начинается настоящая математика. Ответить на него можно только познакомившись с формальными математическими определениями числовых множеств и операций над ними.

Практически все школьники знают простое арифметическое правило «На ноль делить нельзя!» и никто из них не задумывается, почему с нулем невозможно выполнить такое математическое действие, как деление.

Попробуем разобрать этот арифметический принцип. Деление является одним из известных нам арифметических действий – сложение, вычитание, умножение и деление. Вычитание – действие обратное сложению, деление – умножению. Используя эти действия, можно проверить правильность решения задач, однако, эти арифметические действия не являются равноправными. С точки зрения математической науки полноценными из четырех действия являются только сложение и умножение, которые включаются в определение понятия чисел. Остальные действия – вычитание и деление – вытекают и базируются на двух первых.

Рассмотрим пример с вычитанием. Что значит разность двух чисел, например, «3-2»? Даже младший школьник скажет, что из числа «3» мы отнимаем число «2» и получаем «1». Однако математики видят решение этого простого примера совсем по-иному: никакого вычитания не существует, есть одно действие – сложение. Запись «3-2» представляет собой число, которое при сложении с числом «2», даст «3». Математическая запись этой задачи имеет вид уравнения с одним неизвестным «х» и выглядит следующим образом: «х+2=3». Как мы видим, никакого вычитания нет, а действие сложения позволяет нам найти подходящее неизвестное число.

Под таким же «соусом» можно рассмотреть деление. Например, «10:5» можно рассматривать следующим образом: десять яблок делим между пятью детьми. Если это действие представить, как видят его истинные математики, мы получим следующую запись: «5×х=10».

Теперь попытаемся совершить действие деления, но только с нулем. Например, запись «2:0» представим в виде уравнения с неизвестным: «0×х=2». Другими словами, нам нужно найти такое число, умножив которое на «0», мы получим «2». Вот тут и возникает основная трудность: в силу вступает неотъемлемое свойство «0» - при умножении любого числа на «0» всегда получается «0». То есть, в арифметике не существует такого числа, которое при умножении на «0», дало бы число, отличное от нуля. А значит, наша задача не имеет решения. Запись «а:0» (где а – любое число, отличное от нуля) бессмысленна, поэтому в математике вопрос «Почему на ноль делить нельзя » демонстрирует одно из основных свойств этого «неопределенного» числа.

Почему ноль нельзя делить на ноль?

Мы доказали, что любое число нельзя разделить на ноль. А как же быть с самим нулем – можно ли «0» разделить на «0»? Ведь, если представить деление на ноль через умножение: «0×х=0», то пример решается, ведь умножать на «0» допускается. Пусть х=0, тогда наше уравнение имеет следующий вид: 0×0=0. Получается, что можно выполнить такое действие, как: 0:0=0? Попробуем разрешить эту путаницу. Вместо неизвестного числа «х» возьмем любое число, например, «2». Получим «0×2=0». Все верно? Значит, выражение «0:0=2» имеет смысл? Но выходит, что такое действие можно совершать с любыми числами: 0:0=10, 0:0=350, 0:0=10259…

Если для совершения действия деления на ноль подходят любые числа, то нам нет смысла выбирать из них какое-то одно. А значит, мы не сможем определенно сказать, какому из существующих чисел соответствует запись «0:0». Отсюда следует ее бессмысленность и получается, что ноль нельзя делить на ноль!

Вот такая особенность операции деления на ноль, а точнее операции умножения.

Некоторые любознательные могут задать вопрос: почему делить на ноль нельзя, а вычитать его можно? На этот вопрос ответить можно, только объяснение связано уже не с числами, а с математическими множествами и операциями над ними, которые изучаются в университетском курсе математики.

Как объяснить ребенку, почему нельзя делить на ноль?

Детские вопросы – самые сложные для взрослых. Найти на них ответ иногда очень сложно, а ответить доступно для ребенка бывает просто невозможно.

К такому вопросу относится и вопрос «Почему на ноль делить нельзя? », ответ на который не знают даже взрослые - просто их так учили в школе и над ответом никто не задумывался.

Начнем с простого. Математика, как наука, зародилась очень давно. Чтобы как-то уметь с ней обращаться наши предки придумали числа, которые что-то обозначали. Только ноль не обозначал «ничего», т.е. пустоту. Например, у тебя есть 5 мелков, если отдать другу все 5 мелков, то у тебя ничего не останется, т.е. ноль.

Теперь о делении на ноль. Если деление представить в виде ножа, разрезающего все на равные кусочки, то целое можно разделить на две, три, четыре… и т.д. равные части. Однако что-либо разделить на ноль одинаковых частей невозможно, ведь их просто не существует.

Математическое правило относительно деления на ноль всем людям рассказывали еще в первом классе общеобразовательной школы. «Делить на ноль нельзя», - учили всех нас и запрещали под страхом подзатыльника делить на ноль и вообще обсуждать эту тему. Хотя некоторые учителя младших классов все-таки пробовали объяснить на простейших примерах, почему нельзя делить на ноль, но эти примеры были настолько нелогичны, что проще было просто запомнить это правило и не задавать лишних вопросов. Но все эти примеры были нелогичными по той причине, что логически объяснить это в первом классе нам учителя не могли, так как в первом классе мы и близко не знали, что такое уравнение, а логически это математическое правило объяснить можно только с помощью уравнений.

Все знают, что при делении любого числа на ноль выйдет пустота. Почему именно пустота, мы рассмотрим потом.

Вообще в математике только две процедуры с числами признаются независимыми. Это сложение и умножение. Остальные же процедуры считаются производные от этих двух процедур. Рассмотрим это на примере.

Скажите, сколько будет, например, 11-10? Мы все моментально ответим, что это будет 1. А как мы нашли такой ответ? Кто-то скажет, что это и так понятно, что будет 1, кто-то скажет, что от 11 яблок отнял 10 и посчитал, что получилось одно яблоко. С точки зрения логики все правильно, но вот по законам математики эта задача решается по-другому. Нужно вспомнить, что основными процедурами считаются сложение и умножение, поэтому нужно составить такое уравнение: х+10=11, а только потом х=11-10, х=1. Заметим, что сложение идет на первом месте, а только потом на основе уравнения мы можем отнимать. Казалось бы, зачем столько процедур? Ведь ответ и так очевиден. Но только такими процедурами можно объяснить невозможность деления на ноль.

Например, мы делаем такую математическую задачу: хотим 20 поделить на ноль. Итак, 20:0=х. Чтобы узнать, сколько же будет, нужно вспомнить, что процедура деления вытекает из умножения. Другими словами, деление-это производная процедура от умножения. Поэтому нужно составить уравнение из умножением. Итак, 0*х=20. Вот тут и тупик. Какое бы число мы не множили на ноль, все равно будет 0, но не 20. Вот отсюда и вытекает правило: делить на ноль нельзя. Ноль делить на любое число можно, а вот число на ноль - увы, нельзя.

Отсюда появляется еще один вопрос: а можно ли ноль делить на ноль? Итак, 0:0=х, значит 0*х=0. Это уравнение можно решить. Возьмем, например, х=4, значит 0*4=0. Получается, что если разделить ноль на ноль, получится 4. Но и здесь все не так просто. Если мы возьмем, например, х=12 или х=13, то выйдет тот же ответ (0*12=0). Вообще, какое бы мы число не подставляли, все равно выйдет 0. Поэтому, если 0:0, то получится бесконечность. Вот такая нехитрая математика. К сожалению, процедура деления ноль на ноль тоже бессмысленна.

Вообще, цифра ноль в математике самая интересная. К примеру, все знают, что любое число в нулевой степени дает единицу. Конечно, с таким примером в реальной жизни мы не встречаемся, но вот с делением на ноль жизненные ситуации попадаются очень часто. Поэтому запомним, что делить на ноль нельзя.

На самом деле история с делением на ноль не давала покоя его изобретателям (а ). Но индийцы — философы привыкшие к абстрактным задачам. Что значит разделить на ничто? Для европейцев того времени такого вопроса вообще не существовало, так как ни о нуле ни об отрицательных числах (которые левее нуля на шкале) они знать не знали.

В Индии отнять от меньшего большее и получить отрицательное число не составляло проблем. Ведь что значит 3-5=-2 в обычной жизни? Это значит, что кто-то остался должен кому-то 2. Отрицательные числа назывались долгами.

Теперь давайте так же просто разберемся с вопросом деления на нуль. В далеком 598 году нашей эры (только вдумайтесь как давно, более 1400 лет назад!) в Индии родился математик Брахмагупта, который тоже задавался вопросом деления на ноль.

Он предположил, что если взять лимон и начать делить его на части, рано или поздно мы придем к тому, что дольки будут очень маленькими. В воображении мы можем дойти до того, что дольки станут равны нулю. Итак, вопрос, если разделить лимон не на 2, 4 или 10 частей, а на стремящееся к бесконечности количество частей — какого размера получаться дольки?

Получится бесконечное число "нулевых долек". Все довольно просто, нарежем лимон очень мелко, получим лужицу с бесконечным количеством частей.

Но если взяться за математику, то получается как-то нелогично

а*0=0? А если b*0=0? Значит: а*0=b*0. А отсюда: а=b. То есть любое число равно любому числу. Первая неправильность деления на ноль, идем дальше. В математике, деление считается обратным действием умножения.

Это значит, что если мы делим 4 на 2, мы должны найти число, которое при умножении на 2 даст 4 . Делим 4 на ноль — нужно найти число, которое при умножении на ноль даст 4. То есть х*0=4? Но х*0=0! Опять незадача. Получается мы спрашиваем: "Сколько нолей нужно взять, чтобы получилось 4?" Бесконечность? Бесконечное количество нолей все равно даст в сумме ноль.

А деление 0 на 0 вообще дает неопределенность, ведь 0*х=0, где х вообще все что угодно. То есть — бесчисленное множество решений.


Нелогичность и абстрактность операций с нулем не позволяется в узких рамках алгебры, точнее это неопределенная операция. Для нее нужен аппарат посерьезнее — высшая математика. Так что в некотором роде делить на ноль нельзя, но если очень захочется, то делить на ноль можно, но нужно быть готовым понимать такие вещи как дельта-функция Дирака и прочие трудно осознаваемые вещи. Делите на здоровье.