Определение радиусов зон разрушений при взрывах. Расчет вероятных зон действия поражающих факторов при сгорании топливно-воздушных смесей в открытом пространстве Основные поражающие факторы пожара и взрыва

При аварии в резервуарном парке количество газа q(t) или пара берётся: 30% от объёма наибольшего резервуара с бензином, 20% - с нефтью. При аварии на трубопроводе - до 20% вытекшей нефти и до 50% вышедшего газа. При аварии на автотранспорте - 4т бензина. При аварии на железной дороге - 10т бензина, 7т нефти. Величина дрейфа газа воздушного облака принимается равной 300 м в сторону предприятия.

При взрыве пара и газа воздушной смеси выделяют зону детонационной волны с радиусом R1 и зону ударной волны. Определяется также: радиус зоны смертельного поражения людей (R см); радиус безопасного удаления (R бу), где R ф=5 кПа; радиус предельно допустимой взрывобезопасной концентрации пара, газа Кпдвк.

Давление во фронте ударной волны Рф2 в зоне ударной волны определяют по таблице/19/

Избыточное давление в зоне детонационной волны определяется:

Радиус зоны смертельного поражения людей определяется по формуле:

где Q - количество газа, газа в тоннах;

R1 - радиус зоны детонационной волны;

R CM - радиус смертельного поражения людей.

Расчёт взрыва резервуара вертикального стального ёмкостью 5000 м3 с нефтью

Определяем количество газа, выделившегося при взрыве:

Количество нефти в тоннах:

5000?875 = 4375000 кг. = 4375 т.

Тогда количество газа:

0,2 ? 4375 = 875 т.

По формуле определяем радиус зоны детонационной волны:

R1=18,5 ?(875)1/3 = 173,00 м.

По формуле определяем радиус зоны смертельного поражения:

RCM=30 ? (875)1/3 = 280,53м.

Расстояние от центра взрыва до операторной r2= 200 м., то r2/R1=200/173 = 1,16, тогда избыточное давление от центра взрыва до операторной Рф1 = 279 кПа

Это упрощенная и достаточно объективная методика, рассмотренная в работах . На основе анализа и обобщения материалов аварий со взрывом ГВС в очаге поражения (взрыва) на открытой местности (атмосфере) выделяют две зоны: детонации (детонационной волны); распространения (действия) ударной волны (УВ).

Условный (расчетный) радиус зоны детонации (детонационной волны) r 0 определяют по эмпирической формуле:

r 0 =18.5· (2.5),

где k – коэффициент, характеризующий объем газов или паров веществ, переходящих во взрывоопасную смесь. Его значения в расчетах принимаются k=0.4-0.6 . В некоторых методиках значение коэффициента k принимают в зависимости от способа хранения продукта: k = 1 - для резервуаров с газообразным веществом;

k = 0,6 - для газов, сжиженных под давлением;

k = 0,1 - для газов, сжиженных охлаждением (хранящихся в изотермических емкостях);

k = 0,05 - при аварийном разливе легковоспламеняющихся жидкостей;

– количество вещества, разлившегося из разгерметизированной емкости (хранилища);

8,5 – эмпирический коэффициент, который позволяет учесть различные условия возникновения взрыва (характеристики ГВС, состояние атмосферы, форму облака, мощность источника воспламенения, место его инициирования и др.).

За пределами зоны детонации избыточное давление ударной волны (ΔР ф) резко снижается до атмосферного. В литературных источниках предлагаются те или иные зависимости для расчета максимальных значений ΔР ф в зоне детонации с учетом расстояния до места взрыва, например во второй методике, приведенной ниже.

В этой же методике для расчетов используются обобщенные данные изменения избыточного давления (ΔР ф) исходя из расстояния, выраженного в долях от радиуса зоны детонации (r 1 /r 0) и максимального давления (P max) в зоне детонации (табл. 2) . При этом P max для различных ГВС находится по табл.2 из справочников .

Зону распространения (действия) УВ обычно разбивают на несколько (n) зон с радиусами:

· смертельных поражений или полных разрушений (R 100) с избыточным давлением на внешней границе ΔР ф =100 кПа (ΔР ф > 50 кПа);

· сильных и полных разрушений соответственно с ΔР ф =30 кПа и ΔР ф =50 кПа (R 50);

· средних с ΔР ф =20 кПа

· слабых с ΔР ф =10 кПа (R 20)

· безопасную зону с ΔР ф < <10 кПа, т.е. ΔР ф =6 -7 кПа (R 6, 7). * По международным нормам безопасным

· для человека является Δ Р ф =7 кПа .

Затем, определив P max (табл. 2) для данной ГВС, вытекшей при аварии из емкости (хранилища), по табл. 3 при принятых зонах с ΔР ф1 =100 кПа, ΔР ф2 =50 кПа, ΔР ф3 =20 кПа, R 6 , 7 =7кПа находим отношения r 1 /r 0 и, следовательно, радиусы (R n) принятых зон, зная r 0 из (2.5)


и R n =c n ·r 0 (2.7),

где n – показатель той или иной принятой зоны; c x = определяется по табл.3.

По аналогии с характеристиками зон разрушений при воздействии воздушной УВ ядерных взрывов определяют размеры опасных зон, в которых возникнут сильные, возможные (слабые) разрушения жилых и промышленных зданий в районах взрыва газо- и паровоздушных смесей углеводородных газов и жидкостей . Следует сказать, что учитывая импульсный характер воздействия нагрузок от УВ, избыточное давление при взрыве ГВС, вызывающее сильные разрушения, будет примерно в 1,5-1,7 раза больше, чем при ядерном взрыве, т.е примерно ΔР ф ГВС ср ~50 кПа, а возможные слабые разрушения – ΔР ф ГВС сл =20 кПа .

Тогда радиусы зоны сильных (R c) и слабых (R сл) разрушений:

R сл = R 20 = r 0 ·с 20 ,

R c = R 50 = r 0 · с 50

Отношения R 50 /r 0 и R 20 /r 0 могут быть определены как по табл.3, так и по табл.4 . В табл. 4 приведены значения радиусов зон сильных (R c = R 50) и слабых (R cл = R 20) разрушений для массы разлившейся ГВС из разгерметизированной емкости (Q) – Q=1-10000 т и максимальных значений давлений P max =500-2000 кПа .

Таблица 2

Физико-химические и взрывоопасные свойства некоторых веществ и их ГВС

Расчет

радиусов зоны детонации r0 при взрыве участков газопроводов

Исходные данные :

d = 1,42 м; Рг = 7,5 МПа; t = 400С; W = 1 м/с; m=0,8.

Расчет:

1..gif" width="167" height="42"> = 254 м3/кг.

3. М = = 148,1 кг/с.

4. r0 = 12,5 = 152 м.

Отсюда зона детонации будет равна: 2r0= 304 м (с каждой стороны трассы газопровода).

Используя таблицу 21 получаем радиус зоны возможных сильных разрушений, границы которой определяются величиной избыточного давления 50 кПа:

r = 4r0 =608 м

Аналогичные расчёты выполнены и для других участков газопроводов. Полученные данные сведены в таблицу 22:

Таблица 22 - Радиусы зон поражения при воздействии избыточного давления

Степень поражения

Избыточное давление,

Радиус зоны, м для газопроводов

Радиус зоны детонации r0

Разрушение зданий:

Полное разрушение зданий

50 %-ное разрушение зданий

Средние повреждения зданий

Умеренные повреждения зданий

Поражения людей:

Крайне тяжелые

Тяжелые травмы

Средние травмы

Легкие травмы

Пороговые поражения


Расчет вероятных зон действия поражающих факторов при разрушении (разгерметизации) технологического оборудования котельных (А-2)

В результате разрушения газопроводов и технологического оборудования с горючими веществами возможен их выброс внутрь здания или на открытую площадку с образованием газопаровоздушной смеси (ГПВС). Серьезную опасность для персонала, и технологического оборудования представляет взрыв образовавшейся ГПВС.

Процесс горения со стремительным высвобождением энергии и образованием при этом избыточного давления (более 5 кПа) называется взрывным горением.

Различают два принципиально разных режима взрывного горения: дефлаграционный и детонационный.

При дефлаграционном горении распространение пламени происходит в слабо возмущенной среде со скоростями значительно ниже скорости звука, давление при этом возрастает незначительно.

При детонационном горении (детонации) распространение пламени происходит со скоростью, близкой к скорости звука или превышающей ее.

Инициирование (зажигание) газовоздушной смеси с образованием очага горения возможно при наличии источника зажигания.

К основным факторам, влияющим на параметры взрыва, относят: массу и тип взрывоопасного вещества, его параметры и условия хранения или использования в технологическом процессе, место возникновения взрыва, объемно-планировочные решения сооружений в месте взрыва.

Взрывы на котельной можно разделить на две группы - в открытом пространстве и производственном помещении.

Аварии со взрывом могут произойти на пожаровзрывоопасных объектах. К пожаровзрывоопасным объектам относятся объекты, на территории или в помещениях которых находятся (обращаются) горючие газы, легковоспламеняющиеся жидкости и горючие пыли в таком количестве, что могут образовывать взрывоопасные горючие смеси, при горении которых избыточное давление в помещении может превысить 5 кПа. В этом случае газо-, паро-, пылевоздушная смесь займет частично или полностью весь объем помещения.

Котельная:

Сценарий С-1 : (Разгерметизация технологического оборудования, утечка газа, воспламенение на месте выброса, ликвидация горения).

Масса природного газа, который может поступить в котельную – 12 кг.

Природный газ не токсичен. Однако из-за того, что газ не пригоден для дыхания, то он может представлять опасность для персонала внутри помещения котельной. Необходимо соблюдать правила пожарной безопасности , не пользоваться открытым огнём и использовать средства индивидуальной защиты (изолирующий противогаз). При этом от удушья может погибнуть 1 человек из числа персонала котельной.

Сценарий С-2 (Разгерметизация технологического оборудования, утечка газа, воспламенение на месте выброса, горение).

Исходные данные:

Частота реализации сценария год -1: 4*10-5

Масса вещества, кг: 12

Рассматриваемые сценарии:

Пожар утечки.

Результаты расчета:

(поражающие факторы пожара не выйдут за пределы котельной)

Сценарий С-3 (Разгерметизация оборудования, утечка газа, воспламенения на месте выброса нет, образование облака ТВС, источник зажигания, взрыв ТВС с ударной волной).

Исходные данные:

Частота реализации сценария год -1: 1*10-5

Наименование вещества: природный газ

Масса вещества, кг: 12

Тип (класс) взрывоопасного вещества: 4 класс .

Класс окружающего пространства: 3 класс .

Режим взрывного превращения облака: 5 режим.

Рассматриваемые сценарии:

Взрыв ТВС.

Результаты расчета.

Таблица 23 - Радиусы зон поражения при воздействии избыточного давления

Степень поражения

Избыточное давление,

Радиус зоны, м

Разрушение зданий:

Полное разрушение зданий

50 %-ное разрушение зданий

Средние повреждения зданий

Умеренные повреждения зданий

Малые повреждения (разбита часть остекления

Поражения людей:

Крайне тяжелые

Тяжелые травмы

Средние травмы

Легкие травмы

Пороговые поражения


Расчёты погибших, пострадавших и ущерб при ЧС на объектах и сетях газового хозяйства:

Расчёт количества погибших и пострадавших:

Для определения возможного числа пострадавших при поражении людей опасными поражающими факторами возможных аварийных ситуаций зоны воздействия опасных факторов сопоставляются с объектами воздействия и количеством людей, которые могут находиться в данных зонах.

Число летальных исходов поражения определяется исходя из значений условной вероятности поражения человека опасными факторами аварии. Условные вероятности поражения человека опасными факторами аварии определяются на основании значений пробит-функции, рассчитываемых по ГОСТ Р 12.3.047-98. Кроме того, согласно Методическим рекомендациям МЧС России от 01.01.2001 № . для расчёта количества погибших и пострадавших использована таблица 24 «Приближённая оценка плотности населения с, чел./га»:

Таблица 24 - Приближённая оценка плотности населения с, чел./га (чел/м2):

Описание территории

Район фермерских хозяйств, хутора

5/0,0005

Усадьбы

10/0,001

Деревни, зона индивидуальной застройки

МИНИСТЕРСТВО ОБРАЗОВАНИЯ, НАУКИ, молодежи

И спорта УКРАИНЫ

ОДЕССКИЙ НАЦИОНАЛЬНЫЙ МОРСКОЙ УНИВЕРСИТЕТ


Кафедра «Охрана и безопасность на море»

гражданская защита

и оценка последствий в чрезвычайных ситуациях

Методические указания

для проведения самостоятельной работы студентов по дисциплине «гражданская защита»

Лабораторная работа № 5.

Тема: “Оценка инженерной обстановки чрезвычайных ситуаций

Одесса 2012

ЛАБОРАТОРНАЯ РАБОТА № 5

Тема: “Оценка инженерной обстановки чрезвычайных ситуаций”

Учебная цель :освоение методики оценки инженерной обстановки ЧС на взрыво- и пожароопасных объектах

Материальное обеспечение: Методические указания«Гражданская защита и оценка последствий чрезвычайных ситуаций. Часть 1. »; Демиденко Г.П., и др. Справочник. «Защита объектов ОНХ от ОМП ». К.,1986; таблицы.

План проведения занятия:

Вопросы, подлежащие изучению Время, мин
1. Определение понятий и анализ исходных данных. Самост. работа
2. Методика расчета параметров зоны разрушений при взрыве ГВС в открытой атмосфере. Самост. работа
3. Расчет параметров зоны разрушений при взрыве ГВС в открытой атмосфере (пример).
4. Решение задач по оценке инженерной обстановки в зонах чрезвычайных ситуаций.

Отчетность: Выполнить задания 3-4. Законспектировать в тетрадь все вопросы плана занятия. Произвести расчеты представленных задач по оценке инженерной обстановки в ЧС на взрыво- и пожароопасных объектах и сделать соответствующие выводы.

Задания 1-2 выносится на самостоятельную работу (срок выполнения не более одной недели).

Оценка инженерной обстановки чрезвычайных ситуаций на взрыво- и пожароопасных объектах

Общие сведения

Инженерная обстановка - это совокупность последствий стихийных бедствий, аварий (катастроф), а также первичных и вторичных поражающих факторов современных средств поражения, в результате которых имеет место разрушение зданий, сооружений, оборудования, коммунально-энергетических объектов, средств связи и транспорта, мостов, плотин, аэродромов и т. д., что существенно влияет на устойчивость работы объектов экономики и жизнедеятельность населения. Особую опасность с точки зрения частоты возникновения, возможных потерь и полученных убытков представляют собой взрывы, которые могут привести к человеческим жертвам, разрушению производственных сооружений, нарушению производственной деятельности важных объектов на долгое время.

Взрыв – это процесс быстрого освобождения большого количества энергии в ограниченном объеме за короткий промежуток времени. При этом в окружающей среде образуется и распространяется взрывная волна. Взрыв несет опасность поражения людей и обладает разрушительной способностью. Взрывы могут быть направленными или объёмными .

По виду взрывчатого вещества (ВВ) различают взрывы конденсированных ВВ (тротил, гексоген, порох и т. п.), взрывы газопаровоздушных смесей (ГПВС) и аэрозолей (пылевоздушных смесей).

Основными поражающими факторами взрыва являются: воздушная ударная волна (УВ) и осколочные поля, создаваемые летящими обломками разного рода объектов техногенного образования, строительных деталей и т. д.

Основными параметрами поражающих факторов взрыва являются:

– воздушной ударной волны – избыточное давление во фронте (ΔР ф ), скоростной напор воздуха (ΔР ск ) и время действия избыточного давления во фронте (tΔР ф );

– осколочного поля – количество осколков, их кинетическая энергия и радиус разлета.

Однако на практике в качестве определяющего параметра воздушной ударной волны принимают избыточное давление во фронте волны. За единицу измерения ΔР ф в системе СИ принят Паскаль (Па ), внесистемная единица – кгс/см². Соотношения: 1 Па = 1 Н/м² = 0,102 кгс/см²; 1 кгс/см² = 98,1 кПа ≈ 100 кПа.

На промышленных предприятиях наиболее взрывоопасными являются образующиеся в нормальных или аварийных условиях газо-паровоздушные смеси (ГПВС) и пылевоздушные смеси (ПВС). Из ГПВС наиболее опасны взрывы смесей углеводородных газов с воздухом, а так же паров легковоспламеняющихся горючих жидкостей. Взрывы ПВС происходят на мукомольном производстве, на зерновых элеваторах, при обращении с красителями, при производстве пищевых продуктов, лекарственных препаратов, на текстильном производстве. В результате действия поражающих факторов взрыва происходит разрушение или повреждение зданий, сооружений, технологического оборудования, транспортных средств, элементов объекта экономики (ОЭ), гибель людей.

Особенностями безопасной работы ОЭ в мирное время в условиях взрывов являются различные условия оценки безопасности существующих взрывоопасных конструкций на территории ОЭ.

Такими условиями являются:

1) оценка безопасности ОЭ при уже встроенных взрывоопасных конструкциях;

2) оценка безопасности ОЭ при установке новых взрывоопасных конструкций;

3) оценка безопасности проектирующихся предприятий с взрывоопасными конструкциями.

Наиболее частыми случаями в условиях Украины является оценка безопасности при уже встроенных взрывоопасных конструкциях.

При втором и третьем случае, возникает необходимость минимаксных решений, т. е. обеспечение минимума финансовых затрат при максимуме безопасности работы .

Максимум безопасности может обеспечиваться заглублением взрывоопасных конструкций, увеличением расстояния до зданий и сооружений предприятия и другими мероприятиями, связанными с контролем, сигнализацией, охраной и т. д.

Оценка инженерной обстановки объекта включает:

  1. Определение масштабов и степени разрушения элементов объекта в целом, степени разрушений зданий, объектов и др., в том числе защитных сооружений для укрытия рабочих и служащих, размеры зон завалов, объема инженерных работ, возможности объектовых и приданных формирований по проведению аварийно-спасательных и неотложных работ (АСиНР).
  2. Анализ их влияния на устойчивость работы отдельных элементов и объекта в целом, а также жизнедеятельность населения.
  3. Выводы об устойчивости отдельных элементов и объекта в целом к действию поражающих факторов и рекомендаций по ее повышению, предложения по осуществлению аварийно-спасательных и неотложных работ.

Исходными данными для оценки инженерной обстановки являются :

– сведения о наиболее вероятных стихийных бедствиях, авариях (катастрофах), противнике, его намерениях и возможностях по применению оружия массового поражения (ОМП) и других современных средств поражения;

– характеристики первичных и вторичных поражающих факторов средств поражения;

– характеристики защитных сооружений для укрытия рабочих и служащих;

– инженерно-технический комплекс организации и его элементов.

После оценки инженерной обстановки и выводов из нее подготавливают предложения по инженерному обеспечению АСиНР. В предложениях по инженерному обеспечению указываются:

– объекты города, района, на которых необходимо сосредоточить основные усилия инженерных сил и средств;

– основные инженерные мероприятия по обеспечению ввода сил гражданской защиты (ГЗ) в очаги поражения;

– мероприятия по организации неотложных работ на коммунально-энергетических сетях;

– организация инженерного обеспечения спасательных работ на объектах и в жилой зоне;

– общие объемы инженерных работ, потребность в силах и средствах для их выполнения;

– порядок использования имеющихся в наличии формирований инженерной техники.

Объем и сроки проведения АСиНР (аварийно-спасательных и неотложных работ) зависят от степени разрушения зданий, сооружений и объектов экономики. При определении степени разрушения учитывается характер разрушения, ущерб и возможность дальнейшего использования и восстановления.

Приняты следующие степени разрушений: полное, сильное, среднее и слабое, Каждой степени разрушения отвечает свое значение ущерба, объема АСиНР, а также объемы и сроки проведения восстановительных работ.

R 50 - ∆P ф ≥ 50 кПа – зона полных разрушений - разрушение всех элементов зданий, включая подвальные помещения, люди получают тяжелые переломы, разрывы внутренних органов, возможен летальный исход. Убытки составляют более 70 % стоимости основных производственных фондов. Здания и сооружения восстановлению не подлежат.

R 30 - ∆P ф = 30…50 кПа – зона сильных разрушений – разрушение частей стен и перекрытий верхних этажей, трещины в стенах, деформация перекрытий нижних этажей, при этом люди могут получить сильные вывихи, переломы, ушибы головы. Убытки составляют 30 – 70 % стоимости основных производственных фондов, возможно ограниченное использование мощностей, которые сохранились. Восстановление возможно путем капитального ремонта.

R 20 - ∆P ф = 20…30 кПа – зона средних разрушений – разрушение второстепенных элементов зданий и сооружений (кровель, перегородок, оконных и дверных рам), возможное появление трещин в стенах. Перекрытия, как правило, не рухнувшие, подвальные помещения сохранились, поражение людей – в основном обломками конструкций. Убытки составляют 10 – 30 % стоимости основных производственных фондов. Промышленное оборудование, техника, транспортные средства восстанавливаются в порядке среднего ремонта, а здания и сооружения – после текущего или капитального ремонта.

R 10 - ∆P ф = 10…20 кПа – зона слабых разрушений – разрушение оконных и дверных заполнений, перегородок, подвалы и нижние этажи сохранились и пригодны к временному использованию после текущего ремонта зданий, сооружений, оборудования и коммуникаций. Убытки составляют до 10 % стоимости основных производственных фондов (зданий, сооружений). Восстановление возможно путем текущего ремонта.

Для взрывоопасных ОЭ наиболее характерны аварии с выбросом газо-паровоздушных смесей (ГПВС) углеводородных веществ с образованием детонационных взрывов. Ниже дается методика оценки зон разрушений для аварии с выбросом газо-паровоздушных смесей.

Методика расчета параметров зоны ЧС (разрушений) при взрыве ГПВС в открытой атмосфере

При взрыве ГПВС образуется зона ЧС с ударной волной (УВ), вызывающей разрушения зданий, оборудования и т. п. аналогично тому, как это происходит от УВ ядерного взрыва. В данной же методике зону ЧС при взрыве ГПВС делят на 3 зоны: зона детонации (детонационной волны); зона действия (распространения) ударной волны; зона воздушной УВ (Рис. 24).

Рис. 24. Зоны чрезвычайной ситуации при взрыве газо-паровоздушной смеси.

r 1 – радиус зоны детонационной волны (зона I); r 2 – радиус зоны действия УВ взрыва (зона II); r 3 – радиус зоны действия воздушной УВ (зона III).

Зона детонационной волны (зона I ) находится в пределах облака взрыва. Радиус этой зоны r 1 ,м приближенно может быть определен по формуле

Q - количество взрывоопасной ГПВС, хранящейся в емкости, т.

17,5 – эмпирический коэффициент, который позволяет учесть различные условия возникновения взрыва.

В пределах зоны I действует избыточное давление (ΔР ф ), которое принимается постоянным ΔР ф1 = 1700 кПа.

Зона действия УВ взрыва (зона II ) – охватывает всю площадь разлета ГПВС в результате ее детонации. Радиус этой зоны:

r 2 = 1,7 r 1

Избыточное давление в пределах зоны II изменяется от 1350 кПа до 300 кПа и находится по формуле:

ΔР ф2 = 1300(r 1 /r ) + 50 , где

r – расстояние от центра взрыва до рассматриваемой точки, м.

В зоне действия воздушной УВ (зона III ) – формируется фронт УВ, распространяющийся по поверхности земли. Радиус зоны r 3 >r 2 , и r 3 - это расстояние от центра взрыва до точки, в которой требуется определить избыточное давление воздушной УВ (ΔР ф3): r 3 =r . Избыточное давление в зоне III в зависимости от расстояния до центра взрыва рассчитывается по формуле:

ΔР ф3 = , при Ψ ≤ 2 ,

ΔР ф3 = , при Ψ ≥ 2 ,

где Ψ = 0,24r 3 /r 1 = (0,24 r )/(17,5 ) – относительная величина.

Степени разрушений элементов объекта при различных избыточных давлениях ударной волны приведены в таблице 16.

Расстояния (м )от центра взрыва до внешних границ зон разрушения (R i )рассчитываются по формуле:

r 1 – радиус зоны детонационной волны;

ψ – определенный коэффициент, который принимается равным:

– для зоны слабых разрушений ψ 10 = 2,825;

– для зоны средних разрушений ψ 20 = 1,749;

– для зоны сильных разрушений ψ 30 = 1,317;

– для зоны полных разрушений ψ 50 = 1,015.

Площади зон разрушения и очага поражения рассчитываются по формуле:

S = π R ² , где

R – радиус каждой из зон разрушений.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное агентство железнодорожного транспорта

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Иркутский государственный университет путей сообщения

Красноярский институт железнодорожного транспорта

Контрольная работа

Дисциплина: Транспортная безопасность

Расчет размеров взрывоопасных зон избыточного давления взрыва ТВС при авариях с СУГ

Выполнил:

студент заочной формы

Титов Е.Н.

Красноярск 2015 г.

аварийный разгерметизация взрыв пожарный

Определить радиус взрывоопасной зоны при аварийной разгерметизации стандартной цистерны емкостью 54 м 3 с сжиженным пропаном при получении пробоины площадью S 0 = 34 см 2 и при мгновенной разгерметизации цистерны (проливе всего количества СУГ).

1. Масса газа в облаке ТВС при длительном истечении СУГ из цистерны определяется по формуле (3.6):

М р = 36 · 520 · 0,0034 · 1/2 = 2630 кг.

2. Радиус загазованности при S 0 = 34 см 2 определяется по формуле (3.1).

Х нкпр = 14,6 · (2630/1,78 · 2) 0,33 = 132,7 м

Аналогичный результат можно получить без расчета по таблицам, где при S 0 = 38 см 2 расход газа равен G = 3 кг · с -1 . При таком расходе газа и скорости ветра 0,5 м/с глубина зоны загазованности составит 100 м. По упрощенной формуле для оперативных расчетов (3.3) получается приближенный результат:

Х нкпр = 92 · 2,63 0, 33 = 127 м.

3. При мгновенной разгерметизации цистерны и степени заполнения цистерны е = 0,9, согласно п. 3.1.3 масса паров (М р) в облаке для низкокипящих СУГ определяется по формуле (3.4):

М = 0,9 · 54 · 0,52 = 25 т;

М р = 0,62 · М = 0,62 · 25 = 15,5 т.

Радиус взрывоопасной зоны по формуле (3.3) составит:

Х нкпр = 92 · М р 0,33 = 92 · 15,5 0,33 = 230 м.

По формуле (3.1) получается более точный результат:

Х нкпр = 14,6 · (15500/1,78 · 2) 0,33 = 238 м

Для оперативных расчетов результат, полученный по формуле (3.3) практически не отличается от результата расчета по формуле (3.1) и может быть принят за основу при расчетной температуре воздуха t р, 28 0 C.

В условиях низких температур воздуха плотность паров СУГ растет, а радиус загазованной зоны уменьшается незначительно. Так, например, при t р = -40 0 C с п, = 2,3 кг · м -3 радиус взрывоопасной зоны Х нкпр = 220 м. Поэтому приведенные выше упрощенные формулы можно использовать для практических расчетов.

Определить радиус зон поражения и величину избыточного давления во фронте ударной волны при взрыве облака ТВС при аварии цистерны с пропаном.

1. Определяются границы зон поражения при истечении СУГ из пробоины.

Масса газа в облаке ТВС принимается по п. 1.1 Примера 1:

М р = 2630 кг = 2,63т.

Границы зон поражения людей:

тяжелые поражения - R 1 = 32 · 2,63 1/3 = 44м,

порог поражения - R 2 = 360 · 2,63 1/3 = 496 м.

Границы повреждения зданий:

полные разрушения - R 1 = 32 · 2,63 1/3 = 44 м,

сильные разрушения - R 2 = 45 · 2,63 1/3 = 62 м,

средние разрушения - R 3 = 64 · 2,63 1/3 = 88 м,

умеренные разрушения - R 4 = 120 · 2,66 1/3 = 166 м,

малые повреждения - R 5 = 360 · 2,66 1/3 = 496 м.

2. Определяются относительные величины расстояний Х р и величины избыточного давления ДP на расстояниях примера.

Относительная величина расстояния определяется по формуле (3.8):

Х р = R 1 / (0,42 · М р) 1/3 = R 1 / (0,42 · 2,63) 1/3 = R 1 /1,0.

для людей: R 1 = 44 м, ДP = 100 кПа;

R 2 = 496 м, ДP = 3 кПа;

для зданий: R 1 = 44 м, Х р = 44 м, ДP = 100 кПа;

R 2 =62 м, Х р = 62 м, ДP = 55 кПа;

R 3 = 88 м, Х р = 88 м, ДP = 30 кПа;

R 4 = 166 м, Х р = 166 м, ДP = 15 кПа;

R 5 = 496 м, Х р = 496 м, ДP = 3 кПа.

Полученные результаты совпадают с данными с небольшими отклонениями.

3. При мгновенной разгерметизации цистерны масса газа в облаке ТВС составляет М р = 15,5 т. Границы зон поражения с соответственно изменятся, а величины избыточного давления ДP останутся без изменения. Ниже приводятся результаты расчетов по изложенной выше методике для людей. Границы зон поражения:

тяжелые поражения - R 1 = 32 · 15,5 1/3 = 80 м,

порог поражения - R 2 = 360 · 15,5 1/3 = 900 м.

Относительная величина расстояния определяется по формуле (3.8)%.

Х р = R 1 / (0,44 · 15,5) 1/3 = R 1 /1,8.

Значения величин Х р и ДP составят:

R 1 = 80 м, Х р = 80/1,8= 44; ДP = 100 кПа;

R 2 = 900 м, Х р = 900/1,8= 500; ДP = 3 кПа.

Определить ожидаемую плотность теплового излучения на расстоянии r = 33 м от пожара пролива ЛВЖ.

Исходные данные:

В результате разгерметизации трубопровода произошла утечка и загорание бензина на площади 34 м 2 . Скорость ветра незначительна.

Для расчета диаметра и радиуса пламени используется формула (3.25):

d n = (4 · S p /р) 0,5 =(4 · 33/3,14) 0,5 = 3,4 м; r п = 10 м.

Определяется средне поверхностная плотность теплового излучения факела пламени: Е = 130 кВт/м 2 . По формуле (3.27) определяется коэффициент облученности ц между факелом пламени и элементарной площадкой на поверхности облучаемого объекта:

По формуле (3.26) определяется величина плотности теплового излучения q на расстоянии 21 м от пожара: q = Е · ц = 130 · 0,033 = 4,3 кВт · м -2 . Данное значение плотности теплового излучения не вызывает воспламенение горючих материалов.

Определить ожидаемую плотность теплового излучения на расстоянии r = 80 м от огненного шара и оценить опасность излучения. Исходные данные:

В результате столкновения двух цистерн с СУГ произошел пожар пролива вещества.

От теплового воздействия пожара пролива произошел взрыв второй цистерны с нагрузкой 24 т СУГ с образованием огненного шара.

По формулам (3.28) - (3.30) определяются масса огненного шара, его радиус и время существования:

М ош = 0,6 · М = 0,6 · 24 = 14,4 т;

t ош = 4,5 · М ош 1/3 =4,5*2,4= 10,8 с.

По формуле (3.27) определяется ц коэффициент облученности между факелом пламени и элементарной площадкой на поверхности облучаемого объекта при r п = R ош = 70м и r = 80м:

По Приложению 5 определяется средне поверхностная плотность теплового излучения факела пламени Е = 200 кВт/м 2 . По формуле (3.26) определяется величина плотности теплового излучения q на заданном расстоянии: q = Е · ц = 200 · 0,206 = 41,2кВт · м -2 . Данное значение плотности теплового излучения при времени облучения 10,8 с не вызывает воспламенение горючих материалов. Вероятность поражения людей тепловым потоком зависит от индекса дозы теплового излучения (I), который определяется из соотношения (3.31):

I = t ом · (1000 · q) 4/3 = 10,8· (1000 · 41,2) 4/3 = 1,62 · 10 7 .

Доля пораженных тепловым излучением определяем составляет около 50%, получивших ожоги II степени, и 15%, получивших смертельное поражение.

Провести оценку пожарной обстановки при аварии с ЛВЖ и СУГ на сортировочной станции.

Исходные данные:

При проведении маневренных работ произошло столкновение цистерны с ЛВЖ (керосин) и цистерны, содержащей СУГ (пропан). Цистерны стандартные объемом соответственно 61,2 и 54 м 3 , загрузка ЛВЖ 42 т, загрузка СУГ 24 т, степень заполнения 0,85.

В результате столкновения цистерна с ЛВЖ получила пробоину площадью 37см 2 , из которой начал вытекать керосин. Через 60,5 мин. Пролитый керосин воспламенился.

В результате теплового воздействия происходит взрыв цистерны с СУГ с образованием огненного шара.

1) Производится оценка времени и площади разлива ЛВЖ.

Определяем время истечения ЛВЖ. В данном случае при площади пробоины 37 см 2 время полного истечения. Расход керосина из пробоины и средняя скорость определяются по формулам (3.20) и (3.21):

2,22 м · с -1 ,

G = 60 · 2,22 · 800 · 0,0037 = 405 кг · мин -1 .

На 68-ой минуте согласно п. 3.2.6 по формуле (b 1) площадь разлива составит:

S p (ф) = (0,00625 · G) · ф = (0,00625 · 405) · 60,5 = 159 м 2 .

Длина и ширина фронта пожара пролива определяются исходя из условия прямоугольной формы его распространения (п.6.1.4):

где S п - площадь пожара, м 2 ;

а - длина фронта пожара, м;

b - ширина фронта пожара, м.

Ширина фронта пожара при S п = S р = 159 м 2 составляет:

b = (S п /3,5) 1/2 = (159/3,5) 1/2 =5,7 м.

Длина фронта пожара:

а = 3,5 · b = 3,5*5,7=20м.

2) Производится расчет возможного количества вагонов, попавших в зону пожара, в соответствии с п.6.4.

Общее количество вагонов в очаге пожара:

N = S п · К р / S в = 159 · 0,75/80 =2 шт.

количество N к вагонов на крайних железнодорожных путях по длине фронта пожара:

N к = а/(I в + 1) = 20/(12 + 1) = 2 шт.;

количество N ш вагонов на крайних железнодорожных путях по ширине фронта пожара:

N к = b/r жд = 5,7/2 = 3 шт.

Таким образом, в зоне пожара могут находиться 3 цистерны (вагона).

3) Производится расчет зоны опасного воздействия теплового излучения пожара пролива, т.е. зоны возможного распространения пожара при q кр > 12,5 кВт/м 2 .

Масса пролитого керосина согласно п.3.2.6 по формуле (а) составит:

М (ф) = G · ф = 405 · 60,5 = 24,5 т.

В этом случае плотность теплового излучения на расстоянии 50 м составит 12,5 кВт · м -2 . Таким образом, граница опасной зоны (зоны возможного распространения пожара) расположена на расстоянии 50 м от границы пролива. На рис. П. 16.1 показана зона, т.е. при нахождении в зоне возможного распространения пожара горючих материалов произойдет их воспламенение.

4) Через 15-25 мин после начала теплового воздействия пожара пролива на цистерну с СУГ произойдет взрыв этой цистерны с образованием огненного шара. По формулам (3.28) - (3.30) определяются масса огненного шара, его радиус и время существования:

М ош = 0,6 · М = 0,6 · 24= 14,4 т;

R ош = 29 · М ош 1/3 = 29 · 2,4 = 70 м;

t ош = 4,5 · М ош 1/3 = 4,5*2,4=10,8 с.

Полагается, что в зоне радиусом 70 м (радиус огненного шара) все горючие материалы воспламеняются. По формуле (3.27) определяется ц коэффициент облученности ц и величина плотности теплового излучения q (кВт/м 2) на различных расстояниях от огненного шара. Т.к. при величине теплового излучения более 85 кВт/м 2 происходит воспламенение через 3-5 с, полагается, что при времени облучения 11 с (времени существования огненного шара) воспламенение произойдет при q кр = 60 кВт/м 2 . Такой величине плотности соответствует расстояние от поверхности огненного шара - 50 м. Таким образом, зона возможного распространения пожара от воздействия огненного шара составляет 120 м (70 м + 50 м) от цистерны с СУГ (места аварии).

Зоны возможного распространения пожара при аварии с проливом

ЛВЖ и образованием огненного шара (масштаб 1:1000):

1 - пожар пролива ЛВЖ;

2 - зона возможного распространения пожара пролива;

3 - фрагмент зоны возможного распространения пожара от теплового воздействия огненного шара.

Список используемой литературы

1. Методические указания «Определение зон воздействия опасных факторов аварий и пожаров на объектах железнодорожного транспорта» П.Л. Девлишен, В.П. Аксютин, Г.Г. Нестеренко, Г.М. Гроздов, И.Р. Хасанов, Е.А. Москвилин, В.С. Рыжиков. - М, 1997. - 56 с.

2. Общие правила взрывобезопасности для взрывопожароопасных химических, нефтехимических и нефтеперерабатывающих производств. - М.: Металлургия. 1988. - 126 с.

5. Инструкция по организации аварийно-восстановительных работ на железных дорогах Российской Федерации. ЦРБ-353. М.: МПС РФ, 1996. - 32 с.

Размещено на Allbest.ru

...

Подобные документы

    Определение радиуса взрывоопасной зоны при аварийной разгерметизации стандартной цистерны со сжиженным пропаном. Расчет величины избыточного давления во фронте ударной волны при взрыве облака топливно-воздушных смесей при аварии цистерны с пропаном.

    контрольная работа , добавлен 19.05.2015

    Определение избыточного давления при взрыве газовоздушной смеси; избыточного давления во фронте ударной волны; категории взрывоопасности. Оценка степени поражения людей; устойчивости энергоблока ГРЭС к воздействию ЭМИ. Уровень радиации и доза облучения.

    контрольная работа , добавлен 14.02.2012

    Методика оценки химической обстановки, глубина распространения облака, зараженного АОХВ, на открытой местности. Определение размеров зон наводнений при разрушении гидротехнических сооружений. Значение давления ударной волны при взрыве газовоздушной смеси.

    методичка , добавлен 30.06.2015

    Поражающие факторы наземного ядерного взрыва и их воздействие на человека. Расчет поражающего действия ударной воздушной волны. Оценка химической обстановки на объекте экономики при разрушении емкости со СДЯВ. Оказание помощи при отравлении аммиаком.

    контрольная работа , добавлен 25.05.2013

    Давление срабатывания предохранительного клапана в резервуаре. Температура кипения гексана при постоянном давлении. Основные параметры волны давления. Удельная теплоемкость жидкой фазы. Удельная теплота испарения при нормальной температуре кипения.

    задача , добавлен 12.06.2015

    Определение избыточного давления, ожидаемого в районе при взрыве емкости. Тяжесть поражения людей при взрыве газовоздушной смеси. Зона детонационной волны. Энергия взрыва баллона. Скоростной напор воздуха. Коэффициент пересчета уровня радиации.

    контрольная работа , добавлен 14.02.2012

    Определение дозы излучения, которую получают рабочие на экскаваторах. Допустимая продолжительность спасательных и других неотложных работ. Определение размеров и площади зоны химического заражения. Радиус действия детонационной волны и продуктов взрыва.

    контрольная работа , добавлен 15.06.2013

    Методика расчёта степени воздействия ударной волны на объекты и человека при детонационном взрыве газо-паровоздушного облака. Степень теплового воздействия при диффузионном горении горючей жидкости после ее аварийного разлива, при горении огненного шара.

    курсовая работа , добавлен 16.11.2010

    Оценка устойчивости работы объекта экономики в условиях заражения атмосферы химически опасным веществом. Расчет ударной волны ядерного взрыва. Оценка устойчивости объектов к воздействию ударной волны, возникающей при взрывах газовоздушных смесей.

    контрольная работа , добавлен 29.12.2014

    Кратковременное высвобождение внутренней энергии, создающее избыточное давление. Особенности физического взрыва и его энергетический потенциал. Тротиловый эквивалент. Определение категории помещений и зданий по взрывопожарной и пожарной опасности.