Для позвоночных характерен тип строения нервной системы. Облигатное и факультативное научение

Выделяют три основных типа структурной организации нервной системы: диффузный, узловой (ганглионарный) и трубчатый.

Диффузная нервная система - наиболее древняя, характерна для кишечнополостных. Она представляет собой сетевидное соединение сравнительно равномерно разбросанных по телу нервных клеток. Примитивность такой системы состоит в отсутствии разделения ее на центральную и периферическую части, отсутствии длинных проводящих путей. Сеть относительно медленно проводит раздражение от нейрона к нейрону. Реакции организма на раздражение имеют неточный, расплывчатый характер. Однако множество связей между элементами диффузной нервной системы обеспечивает их широкую взаимозаменяемость и тем самым большую надежность функционирования.

Узловая нервная система типична для червей моллюсков, членистоногих. Для нее характерна концентрация тел нервных клеток с образованием ганглиев (узлов). Тела нейронов, сосредоточенные в ганглиях, образуют центральную часть нервной системы. Резко возрастает роль нервных узлов головного отдела. Происходит дифференцировка нейронов в соответствии с различными выполняемыми функциями. Нейроны, по отросткам которых импульс поступает в нервные центры, называются центростремительными (чувствительными) или афферентными , а нейроны, по отросткам которых импульс от нервных центров направляется к исполнительным органам (мышцам, железе), - центробежными (двигательными) или эфферентными . Нервные клетки, воспринимающие возбуждение от одних нейронов и передающие его другим нервным клеткам, называются вставочными или интернейронами . Благодаря специализации нейронов, нервный импульс стал проводиться по определенным путям, что обеспечило быстроту, точность реакций организма. Такой качественно новый способ ответа организма называется рефлекторным типом реакции .

Трубчатая нервная система характерна для хордовых. Такой тип системы обеспечивает наибольшую точность, быстроту и локальность ответных реакций. Для него характерна высшая степень концентрации нервных клеток. Центральная нервная система представлена трубчатым спинным и головным мозгом. В процессе эволюции усиливалось развитие головных отделов мозга, возрастала их регулирующая роль. В головном мозге высших позвоночных развился новый отдел - кора больших полушарий . Она собирает информацию от всех сенсорных и двигательных систем, осуществляет высший анализ и служит аппаратом условно-рефлекторной деятельности, а у человека - органом психической деятельности, мышления.

«Платой» за централизацию нервной системы является высокая ее ранимость: повреждение центров приводит, как правило, к нарушению функций организма в целом.

Типы нервных систем

Существует несколько типов организации нервной системы, представленные у различных систематических групп животных.

    Диффузная нервная система - представлена у кишечнополостных. Нервные клетки образуют диффузное нервное сплетение в эктодерме по всему телу животного, и при сильном раздражении одной части сплетения возникает генерализованный ответ - реагирует все тело.

    Стволовая нервная система (ортогон)- некоторые нервные клетки собираются в нервные стволы, наряду с которыми сохраняется и диффузное подкожное сплетение. Такой тип нервной системы представлен у плоских червей и нематод (у последних диффузное сплетение сильно редуцировано), а также многих других групп первичноротых - например, гастротрих и головохоботных.

    Узловая нервная система, или сложная ганглионарная система - представлена у аннелид, членистоногих, моллюсков и других групп беспозвоночных. Большая часть клеток центральной нервной системы собраны в нервные узлы - ганглии. У многих животных клетки в них специализированы и обслуживают отдельные органы. У некоторых моллюсков (например, головоногих) и членистоногих возникает сложное объединение специализированных ганглиев с развитыми связями между ними - единый головной мозг или головогрудная нервная масса (у пауков). У насекомых особенно сложное строение имеют некоторые отделы протоцеребрума («грибовидные тела»).

    Трубчатая нервная система (нервная трубка) характерна для хордовых.

Нервная система в виде диффузной синцитиальной ткани впервые появляется у многоклеточных. Она представляет собой сеть нервных клеток, так называемую ретикулярную ткань. Морфологическая однородность, своеобразная «замкнутость» ретикулярной ткани не позволяют дифференцировать внешние воздействия. На действие всех внешних агентов живое существо отвечает однотипными реакциями.

С появлением ганглионарной (узловой) нервной системы (черви, моллюски, иглокожие) происходит специализация ответных реакций. Становится возможной передача возбуждения от одних узлов к другим. Структура и функция нервной системы на этом этапе эволюции находятся в прямой связи с рецепторными образованиями. Чувствительные клетки нервной системы в процессе эволюции совершенствовались параллельно с развитием аппаратов рецепции. Этому в значительной мере способствовала морфологическая близость аппаратов рецепции и чувствительных нервных клеток.

Дальнейшее совершенствование функций нервной системы, наблюдающееся у хордовых, связано с централизацией нервных узлов. В структуре нервной системы позвоночных животных развиваются специализированные синапсы, а вместе с ними и множественные связи между нервными клетками. Появление многосинаптической связи создало предпосылки для качественно новых форм взаимоотношений между системами организма, а также между организмом и средой.

У рыб хорошо развит обонятельный мозг, структурно обособлены бледный шар и нервные центры среднего мозга - красное ядро и черная субстанция. В регуляции жизнедеятельности рептилий ведущую роль приобретают большие полушария головного мозга и подкорковые ядра. У отдельных представителей этого класса появляется новая кора, достигающая совершенства у млекопитающих и высшего их представителя - человека.

Головной мозг

Передний мозг

Конечный мозг

Обонятельный мозг ,Базальные ганглии ,Кора больших полушарий ,Боковые желудочки

Промежуточный мозг

Эпиталамус ,Таламус ,Гипоталамус ,Третий желудочек

Ствол мозга

Средний мозг

Четверохолмие ,Ножки мозга ,Сильвиев водопровод

Ромбовидный мозг

Задний мозг

Варолиев мост ,Мозжечок

Продолговатый мозг

Спинной мозг

Эволюция нервной системы тесно связано с эволюцией мышечных тканей. Клетки многоклеточных животных постепенно специализируется для выполнения различных функций. Мышечные клетки появляются в эволюции раньше, чем нервные клетки. Эти первопредки мышечных клеток находятся на поверхности тела и способны реагировать на внешние воздействия сокращением. Хлопин называл их мионейроэпителиальными клетками. В ходе дальнейшего развития многоклеточных организмов мышечные клетки уходят в более глубокие слои тела, поэтому появляется необходимость в чувствительных клетках, доступных к поверхностной стимуляции раздражителями и способные передавать возбуждение глубже лежащим мышечным клеткам. Так появились организмы, имеющие нейроны на поверхности тела, отростки которых находятся в прямом контакте с мышечными клетками. Следующей ступенью развития нервной системы является появление нервных цепей, сначала из 2-х нейронов, а затем и с большим количеством нейронов. Например, такие 2-х нейронные цепи имеются в каждом сегменте дождевого червя. 1-й нейрон (афферентный, чувствительный) лежит на поверхности тела, аксон 1-го нейрона передает импульс глубже лежащему 2-му нейроны (эфферентный, моторный), а 2-й нейрон вызывает сокращение мышечных клеток сегмента. На следующем этапе появляются межсегментные нейроны у сегментированных животных. Это позволяет координировать совгласованные действия сегментов. Увеличение числа этих соединений привело к появлению пучка, тянущегося вдоль тела близко к центральной оси, в конечном виде - спинного мозга и головного мозга. В целом для эволюции нервной системы характерно консервативность: у высших сохраняется признаки сегментарности, присущие низшим; химическая передача импульсов в синапсах и у низших, и у высших. Чем выше уровень организации, тем выраженнее в эмбриональном периоде опережающее развитие и созревание нервной системы. Чем выше уровень организации вида, тем большее число бластомеров зародыша используется для закладки нервной системы. Так, у человека 1/3 площади поверхности оплодотворенной яйцеклетки является презумптивной зоной (будущей зоной) нервной трубки.

    Функции игровой активности животных.

Функции игровой активности по Фабри.1) Развивающая деятельность. На примере манипуляционных игр. Качественные изменения в поведении детеныша связаны с результатами манипуляционных игр, созревание моторных и сенсорных компонентов этого первичного манипулирования. (возможность взять разные предметы в рот у лисенка связаны с первичным захватыванием соска)Значение – формирование моторных компонентов определяется качественными преобразованиями в двигательной сфере, расширение функций и переход некоторых функций от ротового аппарата и наоборот (иногда и смена функций лакание – сосание). Биологическая обусловленность манипулирования – у кошек мультифункциональность конечностей, у барсуков – специализация к рытью нор →развиты передние конечности. →игры обусловлены образом жизни ж. Но противоречивая картина у безьян - передние конечности менее специализированы и их дополнительные функции получили предельное развитие среди млекопитающих. 1.2. Ювенильное поведение и взрослое поведение Двиг.репертуар взрослого формируется путем обрастания и дополнения инстинктивной, врожденной основы поведения видотипичным инд.опытом т\е путем облигарного начения. С возрастом манипулирование приобретает все больше видотипичных черт. Значение – повышается моторно-сенсорный опыт, устанавливаются биологически значимые связи с компонентами среды. 2.Функция это формирование общения.В процессе совместной игры формируется групповое поведение.Под совместными следует понимать те игры где имеет место согласованность действия. Совместные игры без предметов.В совместных манипуляционных играх ж включают в игру какие нибудь предметы в качестве объекта игры такие игры выполняют коммуникативную роль и предметы могут служить и заменой натурального пищевого объекта.2.2. Игровая сигнализация – согласованность действий основывается на обоюдной врожденной сигнализации эти сигналы выполняют функцию ключевых стимулов игрового поведения. Это позы, движения, звуки оповещают партнера о готовности к игре.Важными являются и сигналы предотворощающие серьезный исход игры без подобного оповещения о том, что агрессия ненастоящая игра может перейти в борьбу.2.3. Значние совместных игр для взрослого поведения – если детеныша лишить игры он будет несостоятелен во взрослой жизни. Учатся половому поведению, материнскому. Молодые обезьяны учатся общаться друг с другом в игре.3. Познавательная функция игры – в ходе игры молодь приобретает информацию о свойствах и качествах предметов в окружающей его среде.Это позволяет уточнять и дополнять видовой опыт применительно к конкретным условиям жизни. Менее всего исследовательский компонент в играх служащих лишь физическими упражнениями, в большей где имеет место активное воздействие на объект т\е в манипуляционных играх. Особое мето – опосредованные игры – трофейные т\е совместное познавание предмета следует общение м\д ж.Итак в ходе онтогенезе расширяется и усложняется познавательная деят.ж, имеет место расширение функций, после выхода из гнезда поведение обращается на качественно новые объекты и можно говорить о смене функций

    Характеристика видов научения у животных по У.Торпу.

Классификация видов научения, предложенная в 1963 г. У.Торпом - описательная по историческому принципу с моментами обобщения. Торп выделяет виды научения, изучавшиеся зоопсихологами в тот или иной период развития науки зоопсихологии. Торп “считает, что у различных видов могут быть разные механизмы, ответственные за обучение; он оставляет открытым вопрос о том, в какой мере случаи однотипного обучения у представителей разных таксономичских типов обусловлены сходными механизмами.

Классификация научения по У.Торпу:

1. Привыкание (габитуация);

2. Ассоциативное научение:

а) классический условный рефлекс.

Синонимы: респондентное научение, условный рефлекс первого рода;

б) оперантный условный рефлекс.

Синонимы:“пробы и ошибки”, условный рефлекс второго рода,

инструментальное научение, научение по Скиннеру;

3. Латентное (скрытое) научение;

4. Инсайт (озарение):

а) собственно инсайт (“улавливание отношений”);

б) подражание типа социального облегчения;

в) истинное подражание (“копирование поведенческих актов”);

5. Импринтинг (запечатление):

а) запечатление привязанности;

б) половой импринтинг.

Торп выделяет научение неассоциативное и ассоциативное.

К неассоцативному относят привыкание, характерное для всех животных, от одноклеточных до человека. При ассоциативном научении образуется ассоциативная связь между двумя психическими явлениями.

Научение: Имитационное научение

Облигатное имитационное научение

Факультативное имитационное научение

Невидотипичное имитационное манипулирование

Имитационное решение задач

Латентное, или скрытое, научение исследовал и пытался объяснять Толмен, наблюдая за крысами в лабиринте. В основе этого вида научения лежит исследовательская мотивация. В ходе исследовательского поведения строится то, что Толмен назвал когнитивной картой. У животного формируется психический образ компонентов среды и собственных действий в среде. После этого животное может переходить к нормальной повседневной жизни. Кроме этих ситуаций, латентное научение происходит у детенышей зверей и детей в процессе игры.

Инсайт - высшая форма научения, основывается на опыте, полученном раньше при других сходных обстоятельствах. Присущ только птицам и млекопитающим, обладающим интеллектом. Оказавшись в проблемной ситуации, животное остается неподвижным и только оценивает обстановку, не совершая никаких действий, после чего начинает действовать с учетом реально существующих связей между компонентами среды.

    Характеристика облигатного и факультативного научения.

Облигатное и факультативное научение.

Неассоциативное облигатное обучение . Облигатное научение - это индивидуальный опыт, который возникает в раннем постнатальном периоде и как бы достраивает врожденные инстинктивные программы. При этой форме научения ключевые стимулы могут не совпадать с индифферентными сигналами. К облигатным формам обучения относятся: реакция суммации, привыкания, запечатление (импринтинг), подражания. Суммация - повышение чувствительности нервной ткани к раздражающим агентам у простейших беспозвоночных в виде освоения! маршрута передвижения, различения съедобных и несъедобных! продуктов, осуществления защитных двигательных реакций. Привы кание - ослабление реакции на многократно предъявленный стимул, биологически не значимый в жизни животного, простейшая форма поведения у низших. Импринтинг - комплекс поведенческих актов, устанавливающих первичную связь новорожденного с родителями. В первый социаль­ный контакт по типу импринтинга осуществляется запоминание ме­стоположения, половое запечатление, а также реакция следования за движущимся объектом у выводковых птиц и копытных. Подражание (имитация) - обучение, достройка генетических программ, видотипичных действий путем наблюдения за поведением другой особи своего вида и повторения этих действий. Особенно это характерно для молодого животного, которое путем имитации роди­тельского поведения обучается различным репертуарам поведения своего вида.

Ассоциативное факультативное обучение . Факультативная(ассоциативная) форма - активная форма индивидуального поведе­ния основанная на извлечении значимых функциональных элементов из окружающей среды для выполнения тех или иных актов. К ним от­носятся: 1) классический условный рефлекс и 2) инструментальный условный рефлекс.Условный рефлекс - ассоциация индифферентного раздражителя и безусловного сигнала, вызывающего безусловную реакцию. Инструментальный условный рефлекс - оперантные инструмен­тальные действия, подкрепленные безусловнорефлекторной реакцией.Система классического и инструментального условных рефлексов значительно расширяет адаптивные возможности живых организ­мов, обеспечивая активный фактор взаимодействия со средой.Когнитивное обучение. Высшая когнитивная форма обучения войственна животным с высокоразвитой нервной системой. Это способность формировать целостный образ или функциональную структуру окружающей среды на установлении закономерных связей и отношений между компонентами этой среды.

Анализ поведения животных приводит к выводу, что все богатство и разнообразие полноценного психического отражения связаны с научением, накоплением индивидуального опыта.

Формирование поведения является процессом реализации видотипичных поведенческих актов, опыта. Поэтому формированием нового поведения, научение, является встраивание в инстинктивное поведение, заложенное генетически, новых элементов.

Существуют такие формы научения, внешне напоминающие инстинктивное поведение, но, тем не менее, представляющие собой накопление личного опыта, но в жестких рамках видотипичного поведения. Таковыми являются формы облигатного научения, опыта, необходимого для выживания данного вида вне зависимости от частных условий жизни.

В противоположность облигатному, факультативное научение является формой сугубо индивидуального приспособления.

По мнению Т. Темброка, факультативное научение является наиболее гибким, лабильным компонентом поведения животных. Но эта лабильность неодинакова в различных формах факультативного научения. Конкретизация видового опыта путем добавления в инстинктивное поведение индивидуального опыта присутствует на всех этапах поведенческого акта. Так американский этолог Р.А. Хайд указывает на изменение инстинктивного поведения научением, через изменение сочетания раздражителей, выделения их из общего фона, усиление и т. д.

Существенно и то, что изменения охватывают как эффекторную, так и сенсорную сферу.

В эффекторной сфере примером научения могут являться как рекомбинации врожденных двигательных элементов, так и вновь приобретенные. У высших животных приобретенные движения эффекторов играют большую роль в процессе познавательной деятельности, интеллектуальной сфере функционирования.

Модификация поведения в сенсорной сфере значительно расширяют возможности ориентации животного, вследствие приобретения новых групп сигналов из внешнего мира. Таким примером является случаи, когда сигнал биологически не важный для животного в результате личного опыта в сочетании с биологически важным приобретает ту же степень важности. И этот процесс не является лишь простым образованием новых условных рефлексов.

Основой научения в этом случае являются динамические процессы в нервной системе, особенно во внешних ее отделах, где осуществляется афферентный синтез разнообразных реакций, обусловленных внешними и внутренними факторами. После эти раздражения сопоставляются с ранним индивидуальным опытом, и, в результате, формируется готовность к выполнению вариабельных ответных действий на ситуацию. Следующий за этим анализ результатов является пусковым механизмом нового афферентного синтеза и т.д.

Так, в дополнение к видовым программам, формируются индивидуальные программы, на которых основываются процессы научения. Животное является в этом процессе не пассивным научаемым, а само активно участвует, обладая «свободой выбора» взаимодействия.

Основой научения является формирования эффекторных программ предстоящих действий, в процессе которых происходит сопоставление и оценка внешних и внутренних раздражителей, видового и индивидуального опыта, регистрация параметров и проверка результатов совершаемых действий. Реализация видового опыта в индивидуальном поведении в большей степени нуждается в процессах научения в начальных этапах поискового поведения, ведь реакции на единичные, случайные признаки каждой конкретной ситуации не могут быть запрограммированы в процессе эволюции.

И поскольку без включения вновь приобретенных элементов в инстинктивное поведение реализация видового опыта неосуществима, а значит, эти включения наследственно закреплены, следовательно, диапазон научения является строго видотипичным.

Эти рамки диспозиции к научению у высших животных значительно шире, чем требуется в реальных условиях жизни, поэтому они обладают большими возможностями индивидуального приспособления к экстремальным ситуациям. Уровень пластичности поведения животного в реализации инстинктивного опыта может служить показателем общего психического развития.

В этом процессе развития разницей в поведении между низшими и высшими животными является не смена простого поведения на более сложное, а наоборот к простейшим формам добавляются более сложные, что ведет к повышению вариабельности поведения

    Характеристика перцептивной психики животных.

Характеристика перцептивной психики . Низший уровень. Она является высшей стадией развития псих.отражения. Эта стадия характеризуется изменением строения деятельности – выделением содержания деят-ти, относящейся к условиям в которых дан объект деят-ти в среде (операции)что мы встречаемся с подлинными навыками и восприятиями.Предметные компоненты среды отражаются как целостные элементы. Предметное восприятие предполагает определенную степень обобщения, появляются чувственные обобщения. На этом уровне – членистоногие, моллюски, ракообразные, паукообразные.Инстинктивное поведение не теряет своей актуальности в процессе эволюции так как оно не может замениться научением.Инстинктивное поведение – явл.видовым поведением, а научение – индивидуальнымпрогресс инстинктивного поведения связан с прогрессом индивидуально-изменивого поведения. У высших позвоночных психика приобрела значение решающего фактора эволюции благодаря сильному процессу научения и в высших его проявлениях – интелектуальных действиях., но при этом сохраняются инстинктивные основы поведения. У высших позвоночных инстинктивные компоненты служат для пространственно – временной ориентации наиболее важных поведенческих актов. Пространственная ориентация осуществляется на основе таксисов – тропо – тело – и менотаксисов - т.е. типично врожденных элементов поведения + мнемотаксисы это запоминание ориентиров.Так же инстинк.поведениебиологическая адекватность реагирования на компоненты окружающей среды. Адекватное реагирование на биологические ситуации возможно если ж руководствуется постоянными признаками этих объектов и ситуаций именно это происходит на генетически фиксированной, врожденной основе когда ж реагирует на ключевые раздражители.инстинктивные действия приобретают для ж познавательное значение. Особенно высокий уровень развития инстинктивное поведение достигает у позвоночных в ритуализированном общении ж друг с другомполноценное общение явл.необходимым условием для высшей интеграции в области поведения – интеграции отдельных особей и сообществ. Большая роль научения в образовании индивидуальных особенностей звукового общения и акустического подражаниямогут общаться особи разных видов.способность высших позвоночных к расширению своих коммуникативных способностей путем научения должна была стать важной предпосылкой зарождения человеческих форм общения. Навыки формируются на основе безусловнорефлекторных связей в их состав всегда входят консервативные двиг.элементы. Заученнные автоматизированные действия играют большую роль в жизни высших млекоптающих + обезьяны и человек. Сложные пластичные навыки выполняют функцию быстрого приспособления организма к условиям среды. Пластичность навыков высшего порядка дополняет регидность навыков низшего порядка и инстинктивных действий. Эта пластичность проявляется при превращении положительного или отрицательного раздражителя в противоположный. Другая важная особенность – возможность переноса навыка в новые условия (т.е. адекватное использование опыта)Сложные навыки – это моторнорецепторные системы обеспечивающие на основе ориентировочной деятельности выработку пластичных двигательных программ. Процесс ориентировки +двиг.активность а нахождение верного решения задачи формируется в ходе этой активности на основе чувственного обобщения.сложные навыки стали предпосылкой и основой развития высших форм псих.деят.ж – интелектуальных действий.

    Характеристика сенсорной психики животных.

Характеристика сенсорной психики животных. Низший уровень псих.развития. Движения простейших см.выше. О психике мы говорим что простейшие активно реагируют на изменения в окруж.средепричем реагируют на биологически непосредственно не значимые свойства компонентов среды как на сигналы о появлении жизненно важных условий среды. Важно для понимания условий зарождения психического – реакция простейших на температуру(реакция на темп.это свойство всей протоплазмы).Но у них нет терморецепторовсосуществование допсихического и психического.Качества психического отражения определяется тем насколько развиты способности к движению, пространственно-временной ориентации и к изменениям врожденного поведения. На примитивном уровне у простейших инстинктивное поведение – кинезы. Ориентация – таксисы. Поисковая фаза инстинктивного поведения(кинезов) - недоразвита.Дистантно на этом уровне распознаются только отрицательные компоненты среды, биологически нейтральные не воспринимаются как сигнальные то есть не существуют для животного как таковые. Пластичность поведения – наиболее примитивная форма – привыкание и в отдельных случаях способность к ассоциативному научению. Почему так? Среда микромира менее стабильна, жизнь микроорганизмов непродолжительна, частая смена поколенийлишнее накопление индивидуального опыта. В этой микросреде нет сложных и разнообразных условий к которым надо приспосабливаться.Высший уровень сенсорной психики. Перцепция – способность к предметному восприятию еще отсутствует. Кольчатые черви в их поведении еще преобладает избегание неблагоприятных внешних условий, но активный поиск положительных раздражителей уже есть и это характерно для высшего уровня элементарной сенсорной психики. В их жизни большую роль играют кинезы и элементарные таксисы. Уже встречаются зачатки сложных форм инстинктивного поведения – пиявки, улитки и появляются высшие таксисы, которые обеспечивают более точную ориентацию ж в пространствеполноценное использование пищевых ресурсов. У высших беспозвоночных появляются зачатки конструктивной деятельности, агрессивного поведения, общения. Общая оценка – первично главная функция примитивной нер.системы состояла в координации внутренних процессов жизнедеятельности в связи со все большей специализацией клеток и новых образований – тканей из которых строятся все органы и системы многоклеточного организма. Внешние функции нер.системы определяются степенью внешней активности которая у этих ж на низком уровне. Вместе с тем строение и функции рецепторов и внешняя деят-ть нер.системы усложняется у ж ведущих активный образ жизни. Стереотипия форм реагирования – определяющая черта всего их поведения.

    Эволюционная необходимость появления психического отражения в органическом мире.

Появившись лишь на определенном этапе развития органического мира, психика присуща только высокоорганизованным живым существам. Она выражается в их способности отражать своим состоянием окружающий мир. Началом этого этапа в эволюции органического мира следует считать появление животной формы жизни, ибо именно специфические условия жизнедеятельности животных породили необходимость качественно нового, активного отражения объективной действительности, способного регулировать усложнившиеся отношения организма со средой.

Таким образом, психика является формой отражения, позволяющей животному организму адекватно ориентировать свою активность по отношению к компонентам среды. При этом, служа активному отражению объективной реальности, материи, психика сама есть свойство высокоразвитой органической материи. Этой материей является нервная ткань животных (или ее аналоги). У подавляющего большинства животных имеется головной мозг - центральный орган нервно-психической деятельности.

Психика животных неотделима от их поведения, под которым мы понимаем всю совокупность проявлений внешней, преимущественно двигательной, активности животного, направленную на установление жизненно необходимых связей организма со средой. Психическое отражение осуществляется на основе этой активности в ходе воздействий животного на окружающий мир. При этом отражаются не только сами компоненты окружающей среды, но и собственное поведение животного, а также произведенные им в результате этих воздействий изменения в среде. Притом у высших животных (у высших позвоночных), которым свойственны подлинные познавательные способности, наиболее полноценное и глубокое отражение предметов окружающего мира совершается именно в ходе их изменения под воздействием животного.

У большинства животных нервная система состоит из двух частей - центральной и периферической . Центральная нервная система позвоночных (в частности человека) ​​состоит из главного и спинного мозга . Периферическая нервная система состоит из сенсорных нейронов , совокупностей нейронов, называемых ганглиями, и нервов, соединяющих их между собой и с центральной нервной системой.

Нервы зависимости от состава их волокон разделяют на чувствительные, двигательные и смешанные. Чувствительные нервы содержат центростремительные волокна, двигательные - центробежные волокна, а смешанные - оба вида нервных волокон. Много нервов и их разветвлений на периферии кроме нервных волокон имеют нервные узлы (ганглии). Они состоят из нейронов, отростки которых входят в состав нервов, и их разветвлений (нервные сплетения).


1. Типы нервных систем

В процессе эволюции у животных возникли следующие типы нервной системы: диффузная, узловая и трубчатая.

Диффузная нервная система древнейшая, характерна для кишечнополостных , в которых образована диффузным сплетением нервных клеток в эктодермальные слое тела животных. . Примитивность такой системы заключается в том, что отсутствует распределение ее на центральную и периферическую части и отсутствуют длинные проводящие пути. Сетка относительно медленно проводит раздражение во всех направлениях от нейрона к нейрону. Так как нейроны связаны с эпителиально-мускульными клетками, то волна возбуждения от какой угодно точки тела распространяется дальше и сопровождается мышечными сокращениями. Реакции организма имеют неточный характер. Но большое количество связей между элементами диффузной нервной системы вызывают их широкую взаимозаменяемость, а этим обеспечивается надежность функционирования.

Стволовая нервная система характерна для Плоских и Круглых червей и характеризуется образованием скоплений нервных клеток, которые приобретают форму тяжей, проходящих вдоль тела. При этом особенно развивается парный мозговой ганглий, т.е. в ходе эволюционного развития наблюдается процесс цефализации . На периферии нервной системы данного типа сохраняются элементы диффузного плексуса. Преимущества, которые получают организмы с стволовой нервной системой по сравнению с диффузной - это, в первую очередь, усложнение поведения, в частности, возможность формирования условных рефлексов и повышения скорости реакции на раздражитель. Вместе с тем, их нервная система сохраняет высокую способность к регенерации из-за неполной специализацию отделов, что является преимуществом по сравнению с совершенными системами. Однако реакций на раздражитель примитивны. К тому же данный тип нервной системы обеспечивает лишь примитивные условные рефлексы через незначительную степень концентрации нервных клеток.

Узловая нервная система типична для кольчатых червей , моллюсков , членистоногих . Для нее характерно скопление тел нервных клеток с образованием узлов - ганглиев. Нейроны, сосредоточены в ганглиях, образуют центральную часть нервной системы. Происходит дифференциация нейронов согласно различными функциями. Нейроны, по которым информация поступает в нервные центры называются центростремительными (чувствительными) или афферентными. Нейроны, по которым информация от нервных центров идет в органы, называются центробежными (двигательными) или эффекторными. Нервные клетки, воспринимающие возбуждение от других нейронов и передают дальше нервным клеткам, называются вставными или вставочные. Благодаря специализации нейронов, нервный импульс проводится определенным путем, что обеспечивает быстроту и точность реакций. Также данный тип нервной системы благодаря высокой централизации позволяет формировать сложные условные рефлексы и инстинкты. Таким образом, у организмов с данным типом нервной системы наблюдается значительное усложнение поведения. При этом самая узловая нервная система характерна для головоногих моллюсков , которых называют "млекопитающими моря" благодаря сложности поведенческих реакций. Также для них характерен высокий уровень развития сенсорных систем.

Трубчатая нервная система характерна для высших животных - хордовых. Эта система обеспечивает наибольшую точность, скорость и локальность соответствующих реакций. Для нее характерна высокая степень концентрации нервных клеток. Центральная нервная система состоит из спинного мозга в виде трубки и главного . В процессе эволюции усугублялось развитие главных отделов мозга и росла его регулирующая роль. Этот процесс назвали цефализацией . В головном мозге высших позвоночных образовался новый отдел - кора больших полушарий. Она собирает информацию от всех сенсорных и двигательных систем, осуществляет высший анализ и служит аппаратом тонкой условнорефлекторной деятельности. У человека кора еще органом психической деятельности и осознанного мышления.

Цефализация нервной системы способствует развитию органов чувств и опорно-двигательной системы. Чем сложнее орган, тем выше степень цефализации. Развитие двигательной системы, ее высокая дифференциация и разнообразие форм движения корректируют цефализацией нервной системы.

Недостатком трубчатой ​​нервной системы является ее низкий потенциал регенерации, что связано как с незаменимостью многих структур, так и с медленным восстановлением самих нейронов. К тому же разные участки мозга выполняют разные функции. Такая узкая специализация отдельных структур одного из важнейших органов исключает регенерацию мозга, потому что при его повреждении один отдел не может заменить другой, поэтому повреждения центров приводит к нарушению функций организма в целом.


2. Нервная система различных животных

2.1. Coelenterata


2.3. Членистоногие


2.5. Позвоночные

Организация нервной системы позвоночных
Периферийная Соматическая
Автономная Симпатичная
Парасимпатическая
Ентерична
Центральная Головной мозг
Спинной мозг
— в энтодерме.

Особенность диф-фузной нервной системы заключается в том, что активность распро-страняется в любом направлении из любой точки стимуляции. Хотя нервная система подобного типа может считаться примитивной, такие действия, как питание , плавание, перемещение на раковины моллюс-ков у актиний и т. д., далеко не просты.

У медуз и актиний кроме нервной сети имеется еще система длинных биполярных нейронов, образующих цепочки. Они способны быстро передавать импульсы на большие расстояния без их затухания, возможно, это и позволяет организму осуществлять общую реакцию на различные стимулы.

В других груп-пах беспозвоночных жи-вотных нервные сети су-ществуют наряду с нерв-ными стволами. Они отме-чены на различных участ-ках тела — под кожей, в глотке или других частях кишечника, а также в ноге моллюсков или в лучах иг-локожих.

Уже у стрекающих наме-чается тенденция к концен-трации нейронов в области ротового диска, а у поли-пов еще и в подошве. У медуз образуются нервные сгущения по краю зонтика, а в определенных местах кольцевого сгу-щения — еще и скопления нервных клеток. Их называют ганглии. Крае-вые ганглии медуз представляют собой первый шаг к формированию центрального отдела нервного аппарата. В них сконцентрированы перикарионы нервных клеток, а сами ганглии нервными тяжами связаны между собой и с периферией — органами чувств и эффекторами. Тяжи (нервы) состоят из аксонов нервных клеток, находящихся в ганглиях.

Следующим этапом концентрации нервных элементов и усложнения нервных аппаратов является образование ортогона у плоских червей — стволовая нервная система . Самые примитивные из них имеют рассеянное нервное сплетение. Затем в нем появляются продольные и поперечные сгущения, которые упорядочиваются и образуют прямоугольную решетку из продольных и кольцевых стволов — ортогон (рис. 38). Это исходная форма для большинства типов нервного аппарата низших червей.

Как и у книдарий, у некоторых групп типа плоских червей встреча-ются нервные сети. Их функциональные харак-теристики такие же, как у книдарий.

Эволюция ортогона идет в сторону уменьшения числа стволов при смещении все большего числа нервных клеток в мозг. Его появление способствует интеграции организма. У более продвинутых в эволюционном отношении беспозвоночных лучше развиты передние ганглии. Это часть общего процесса дифференцировки головы , или цефализации . Она характерна для билатерально--симметричных животных, ведущих, как прави-ло, подвижный образ жизни. У таких животных ротовое отверстие и чувствительные органы располагаются на переднем конце тела. В таком случае обработка сигналов от органов чувств (зрительных, обонятельных, вкусовых и т. п.) осуществляется головным, или церебральным, ганглием. В его функции входят также нервный контроль пищедобывающего поведения и кон-троль рефлексов . Можно сказать, что мозг «при-нимает стратегические решения» и отдает «ко-манды».

Мозг образуется либо за счет утолщения од-ного из первых колец примитивного ортогона, либо за счет скопления нервных клеток в перед-нем конце тела в толще паренхимы. Отсюда и различия в названиях: первый тип мозга называ-ется ортогонным, а второй — эндонным.

Нервный аппарат, подобный описанному выше, характерен для целого ряда беспозвоноч-ных, в частности для круглых червей . По- видимому, ортогон следует считать исходным типом нервного аппарата моллюсков и кольча-тых червей, поскольку личинки последних име-ют близкое к нему строение нервной системы.

Узловая нервная система

Из современных моллюсков наиболее просто устроен нервный аппарат у боконервных. Их мозг развит очень слабо. От него отходят две пары нервных стволов — педальные и плевро-висцеральные, соединенные между собой мно-жеством поперечных комиссур. Это центральный нервный аппарат, кроме него у всех моллюсков есть еще периферическое нервное спле-тение.

У большинства моллюсков все клетки центрального нервного ап-парата собираются в компактные, четкие ганглии, а участки стволов, соединяющие два ганглия, полностью освобождаются от нервных кле-ток. Ганглии можно сравнить с телефонными станциями, а промежу-точные участки — с пучками проводов. Нервная система моллюсков образует так называемый узловой (разбросанно-узловой) тип , или сложную ганглионарную систему . Ганглии в нем расположены на разных уровнях. Общим для них является ганглионизация и укорочение соединительных продольных (коннектив) и попереч-ных (комиссур) тяжей, а также уход ЦНС вглубь.

У кольчатых червей нет диффузно-го нервного сплетения, свойственного моллюскам. Их центральный нервный аппарат состоит из мозга, или надгло-точного ганглия, окологлоточных коннектив и пары нервных стволов, лежащих под кишкой и соединяю-щихся поперечными комиссурами. У большинства кольчецов нервные стволы полностью ганглионизированы, причем в типичном случае в каж-дом сегменте тела образуется по од-ной паре ганглиев. Каждая пара ин-нервирует свой сегмент. У примитив-ных кольчецов брюшные стволы ши-роко расставлены и соединены длин-ными поперечными комиссурами так, что образуется «лестничная нервная система». У более высокоорганизо-ванных представителей происходит укорочение комиссур и сближение стволов, что ведет в конце концов к их слиянию. При этом ЦНС приобретает вид цепочки, которую называют брюшной нервной цепочкой.

Подобный тип нервного аппарата встречается и у членистоногих. Он рас-положен глубоко внутри тела и также состоит из мозга, окологлоточных коннективов и брюшной нервной цепочки (рис. 39), но в мозг включается одна пара брюшных ганглиев, образующая задний его отдел (тритоцеребрум).

В отличие от кольчецов у членистоногих широко распространена концентрация брюшной нервной цепочки за счет укорочения коннективов и слияния последовательных метамерных ганглиев. Коннективы укорачиваются в той же степени, в какой удлиняются периферические нервы. Этим достигается централизация нервного аппарата — укорочение межцентральных путей. В ряде случаев, характерных для раков и насекомых, ганглии концентрируются лишь в голове и груди. Иннервация брюшка осу-ществляется длинными перифе-рическими нервами (рис. 40).

В централизованной нервной системе, подобно той, которую име-ют головоногие моллюски или членистоногие, механизм быстрого от-вета на раздражение осуществляется по типу рефлекторной дуги, в об-разовании которой участвуют несколько нейронов (рис. 41): чувстви-тельный , промежуточный (ассоциативный ) и двигательный . Какое-либо внешнее раздражение вызывает изменения в воспринимающем органе, что в свою очередь стимулирует чувствительный нейрон, от которого импульс через синапсы попадает на промежуточный нейрон, а от него — на двигательный. По аксону двигательного нейрона импульс доходит до мышечного волокна, которое отвечает на стимул сокращением. Материал с сайта

У насекомых особой сложно-сти достигает головной мозг (над-глоточный ганглий). Он состоит из трех пар слившихся ганглиев — протоцеребрума , дейтоцеребрума и тритоцеребрума . Наиболее раз-вит протоцеребрум, имеющий не-сколько центров, в том числе ко-ординирующие центры нервной системы. С протоцеребрумом свя-зана пара очень крупных и сложных зрительных долей, иннервирую-щих сложные глаза. Дейтоцеребрум иннервирует усики, а тритоцеребрум — верхнюю губу.

Подглоточный ганглий состоит из трех пар слившихся ганглиев и иннервирует ротовые органы и передний отдел кишечника.

Концентрация нервной системы высших групп насекомых — яркое проявление принципа олигомеризации (уменьшения числа гомологич-ных органов и частей). Она улучшает нервное управление организмом и в целом способствует повышению морфофизиологического уровня насекомых.

Кроме ЦНС, у насекомых имеются также периферическая и симпа-тическая нервные системы. С последней связаны эндокринные желе-зы — прилежащие и кардиальные тела (см. Эндокринная система, железы и гормоны насекомых ).

Трубчатая нервная система вторичноротых

Все рассмотренные типы нервных аппаратов характерны для так называемых первичноротых животных . К вторичноротым из беспо-звоночных относятся иглокожие и погонофоры. Вторичноротыми являются и все хордовые , в том числе позвоночные животные .

По строению нервного аппарата низшие вторичноротые стоят на низкой ступени развития, отличаясь от книдарий в основном тем, что имеют нервные сплетения не только в эктодерме, но и в эпителиях кишечника и целома (вторичной полости тела) . У хордовых же ЦНС представлена нервной трубкой, проходящей по спинной стороне жи-вотного. Передний конец трубки обычно расширен и образует голов-ной мозг.

И перерабатывает посту­пающую информацию, хранит следы прошлой активности (следы памяти) и соответственно регулирует и координи­рует функции организма.

В основе деятельности нервной системы лежит рефлекс, связанный с распространением возбуждения по рефлекторным дугам и процессом тормо­жения. Нервная система образована главным образом нервной тканью , основная структурная и функциональная единица которой - нейрон . В ходе эволюции животных происходило постепенное усложнение нервной системы и одновременно усложнялось их поведение.

В развитии нерв­ной системы отмечают несколько этапов.

У простейших нервной системы нет, но у некоторых инфузорий есть внутриклеточный фибриллярный возбудимый аппарат. По мере развития многоклеточных формируется специализи­рованная ткань, способная к воспроизведению активных реакций, то есть к возбуждению. Сетевидная , или диффуз­ная , нервная система впервые появляется у кишечнопо­лостных (гидроидные полипы). Она образована отростками нейронов , диффузно распределенными по всему телу в виде сети. Диффузная нервная система быстро проводит возбуждение из точки раздражения во всех направлениях, что придает ей интегративные свойства.

Диффузной нервной системе свойственны и незначи­тельные признаки централизации (у гидры уплотнения нервных элементов в области подошвы и орального полю­са). Усложнение нервной системы шло параллельно с раз­витием органов движения и выражалось прежде всего в обособлении нейронов из диффузной сети, погружении их в глубь тела и образовании там скоплений. Так, у свободно живущих кишечнополостных (медуз) нейроны скаплива­ются в ганглии, образуя диффузно-узловую нервную сис­тему . Формирование этого типа нервной системы связано, в первую очередь, с развитием специальных рецепторов на поверхности тела, способных избирательно реагировать на механические, химические и световые воздействия. Наряду с этим прогрессивно увеличивается число нейронов и разнообразие их типов, формируется нейроглия . Появля­ются двухполюсные нейроны , имеющие дендриты и аксо­ны . Проведение возбуждения становится направленным. Дифференцируются и нервные структуры, в которых осу­ществляется передача соответствующих сигналов другим клеткам, управляющим ответными реакциями организма. Таким образом, одни клетки специализируются на рецеп­ции, другие - на проведении, третьи - на сокращении. Дальнейшее эволюционное усложнение нервной системы связано с централизацией и выработкой узлового типа организации (членистоногие, кольчатые черви, моллюски). Нейроны концентрируются в нервные узлы (ганглии), свя­занные нервными волокнами между собой, а также с рецепторами и исполнительными органами (мышцы , же­лезы).

Дифференциация пищеварительной, половой, крове­носной и др. систем органов сопровождалась совершенст­вованием обеспечения взаимодействия между ними с по­мощью нервной системы . Происходит значительное усложнение и возникновение множества центральных нервных образований, находящихся в зависимости друг от друга. Околощитовидные ганглии и нервы, контролирую­щие питание и роющие движения, развиваются у филоге­нетически высших форм в рецепторы , воспринимающие свет, звук, запах; появляются органы чувств . Так как ос­новные рецепторные органы располагаются в головном конце тела, то и соответствующие ганглии в головной части туловища развиваются сильнее, подчиняют себе деятель­ность остальных и образуют головной мозг . У членистоно­гих и кольчатых червей хорошо развита нервная цепочка . Формирование адаптивного поведения организма проявля­ет себя наиболее ярко на высшем уровне эволюции - у позвоночных - и связано с усложнением структуры нерв­ной системы и усовершенствованием взаимодействия ор­ганизма с внешней средой. Одни части нервной системы проявляют в филогенезе тенденцию усиленного роста, дру­гие остаются слаборазвитыми. У рыб передний мозг слабо дифференцирован, но хорошо развиты задний и средний мозг , мозжечок . У земноводных и пресмыкающихся из переднего мозгового пузыря обособляются промежуточ­ный мозг и два полушария с первичной корой мозга .

У птиц сильно развит мозжечок , средний и промеж­уточный мозг . Кора выражена слабо , но вместо нее сфор­мировались особые структуры (гиперстриатум ), выполняю­щие те же, что и кора у млекопитающих , функции .

Высшего развития нервная система достигает у млеко­питающих , особенно у человека , главным образом за счет увеличения и усложнения строения коры больших полуша­рий. Развитие и дифференциация структур нервной систе­мы у высших животных обусловили ее разделение на центральную и периферическую .