Системы координат, применяемые в топографии: географические, плоские прямоугольные, полярные и биполярные координаты, их сущность и использование. Декартова система координат: основные понятия и примеры


Если на плоскости или в трехмерном пространстве ввести систему координат, то мы получим возможность описывать геометрические фигуры и их свойства с помощью уравнений и неравенств, то есть, мы сможем использовать методы алгебры. Поэтому понятие системы координат очень важно.

В этой статье мы покажем как задается прямоугольная декартова система координат на плоскости и в трехмерном пространстве и выясним как определяются координаты точек. Для наглядности приведем графические иллюстрации.

Навигация по странице.

Прямоугольная декартова система координат на плоскости.

Введем прямоугольную систему координат на плоскости.

Для этого проведем на плоскости две взаимно перпендикулярные прямые, выберем на каждой из них положительное направление , указав его стрелочкой, и выберем на каждой из них масштаб (единицу измерения длины). Обозначим точку пересечения этих прямых буквой О и будем считать ее началом отсчета . Так мы получили прямоугольную систему координат на плоскости.

Каждую из прямых с выбранным началом отсчета О , направлением и масштабом называют координатной прямой или координатной осью .

Прямоугольную систему координат на плоскости обычно обозначают Oxy , где Ox и Oy – ее координатные оси. Ось Ox называют осью абсцисс , а ось Oy – осью ординат .

Сейчас условимся с изображением прямоугольной системы координат на плоскости.

Обычно единица измерения длины на осях Ox и Oy выбирается одинаковая и откладывается от начала координат на каждой координатной оси в положительном направлении (отмечается штришком на координатных осях и рядом записывается единица), ось абсцисс направляется вправо, а ось ординат – вверх. Все остальные варианты направления координатных осей сводятся к озвученному (ось Ox - вправо, ось Oy - вверх) при помощи поворота системы координат на некоторый угол относительно начала координат и взгляда на нее с другой стороны плоскости (при необходимости).

Прямоугольную систему координат часто называют декартовой, так как ее на плоскости впервые ввел Рене Декарт. Еще чаще прямоугольную систему координат называют прямоугольной декартовой системой координат, собирая все воедино.

Прямоугольная система координат в трехмерном пространстве.

Аналогично задается прямоугольная система координат Oxyz в трехмерном евклидовом пространстве, только берется не две, а три взаимно перпендикулярных прямых. Другими словами, к координатным осям Оx и Oy добавляется координатная ось Oz , которую называют осью аппликат .

В зависимости от направления координатных осей различают правую и левую прямоугольные системы координат в трехмерном пространстве.

Если смотреть с положительного направления оси Oz и кратчайший поворот от положительного направления оси Ox к положительному направлению оси Oy происходит против хода часовой стрелки, то система координат называется правой .

Если смотреть с положительного направления оси Oz и кратчайший поворот от положительного направления оси Ox к положительному направлению оси Oy происходит по ходу часовой стрелки, то система координат называется левой .

Координаты точки в декартовой системе координат на плоскости.

Сначала рассмотрим координатную прямую Ox и возьмем некоторую точку M на ней.

Каждому действительному числу соответствует единственная точка M на этой координатной прямой. К примеру, точке, расположенной на координатной прямой на расстоянии от начала отсчета в положительном направлении, соответствует число , а числу -3 соответствует точка, расположенная на расстоянии 3 от начала отсчета в отрицательном направлении. Числу 0 соответствует начало отсчета.

С другой стороны, каждой точке M на координатной прямой Ox соответствует действительное число . Это действительное число есть ноль, если точка M совпадает с началом отсчета (с точкой O ). Это действительное число положительно и равно длине отрезка OM в данном масштабе, если точка M удалена от начала отсчета в положительном направлении. Это действительное число отрицательно и равно длине отрезка OM со знаком минус, если точка M удалена от начала отсчета в отрицательном направлении.

Число называется координатой точки M на координатной прямой.

Теперь рассмотрим плоскость с введенной прямоугольной декартовой системой координат. Отметим на этой плоскости произвольную точку М .

Пусть - проекция точки M на прямую Ox , а - проекции точки M на координатную прямую Oy (при необходимости смотрите статью ). То есть, если через точку M провести прямые, перпендикулярные координатным осям Ox и Oy , то точками пересечения этих прямых с прямыми Ox и Oy являются соответственно точки и .

Пусть точке на координатной оси Ox соответствует число , а точке на оси Oy - число .

Каждой точке М плоскости в заданной прямоугольной декартовой системе координат соответствует единственная упорядоченная пара действительных чисел , называемых координатами точки M на плоскости. Координату называют абсциссой точки М , а - ординатой точки М .

Верно и обратное утверждение: каждой упорядоченной паре действительных чисел соответствует точка М плоскости в заданной системе координат.

Координаты точки в прямоугольной системе координат в трехмерном пространстве.

Покажем как определяются координаты точки М в прямоугольной системе координат, заданной в трехмерном пространстве.

Пусть и - проекции точки M на координатные оси Ox , Oy и Oz соответственно. Пусть этим точкам на координатных осях Ox , Oy и Oz соответствуют действительные числа и .

Проекции точки M на координатные оси также можно получить, если построить плоскости, перпендикулярные прямым Ox , Oy и Oz и проходящие через точку M . Эти плоскости будут пересекать координатные прямые Ox , Oy и Oz в точках и соответственно.

Каждой точке трехмерного пространства в заданной декартовой системе координат соответствует упорядоченная тройка действительных чисел , называемых координатами точки M , числа и называют абсциссой , ординатой и аппликатой точки М соответственно. Верно и обратное утверждение: каждой упорядоченной тройке действительных чисел в заданной прямоугольной системе координат соответствует точка М трехмерного пространства.

Список литературы.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г.. Геометрия. Учебник для 10-11 классов средней школы.
  • Мордкович А.Г. Алгебра. 7 класс. Часть 1: учебник для учащихся общеобразовательных учреждений.

Пример 1. Вычислим на геоцентрической небесной сфере часовой угол Н и склонение тела, имеющего азимут (измеряемый в восточном направлении от точки севера) А и высоту а. При этом будем считать, что широта наблюдателя равна

На рис. 2.11 показана соответствующая небесная сфера, на которой X обозначает положение тела, а остальные символы имеют обычные значения.

Теорема косинусов, примененная к сферическому треугольнику PZX, дает

Отсюда можно вычислить . Воспользовавшись теоремой косинусов еще раз, получаем

откуда находим Н, так как б уже известно.

С другой стороны, используя формулу, связывающую четыре величины (90° - а), (360° - А), и H, получаем

Пример 2. Считая, что наклонение эклиптики равно преобразуем эклиптические координаты (небесную долготу К и небесную широту Р) космического аппарата в геоцентрические экваториальные координаты (прямое восхождение а и склонение ).

Как показано на рис. 2.12, в сферическом треугольнике КРХ (X - положение космического аппарата на небесной сфере) содержится вся необходимая информация.

Воспользовавшись по очереди теоремой косинусов, теоремой синусов и аналогом теоремы косинусов, получаем

откуда можно найти а и б.

Читателю предлагается в качестве упражнения провести преобразования, обратные рассмотренным в примерах 1 и 2.

Пример 3. По известным гелиоцентрическим прямоугольным координатам космического аппарата, обращающегося вокруг Солнца, определим его геоцентрическое расстояние , прямое восхождение а и склонение .

На этом примере будет проиллюстрирован ряд важных принципов. Для наблюдения аппарата с Земли или связи с ним в заданный момент времени нужно знать геоцентрические прямое восхождение, склонение и удаление аппарата. С другой стороны, межпланетный

планетный космический аппарат движется по орбите вокруг Солнца, а элементы такой орбиты определяются в гелиоцентрической системе. Зная элементы и время, можно определить прямоугольные координаты в системе с началом в центре Солнца. Ниже мы увидим, как это делается (см. гл. 4). В настоящем примере мы будем предполагать, что основой прямоугольной системы координат служат эклиптика и направление на Т. и покажем, как эти прямоугольные координаты можно преобразовать в геоцентрическое расстояние, прямое восхождение и склонение. В астрономии такое преобразование является стандартной процедурой. Обратная задача определения элементов орбиты по измерениям прямого восхождения и склонения тела также является стандартной процедурой.

Однако она сложнее и будет рассмотрена позже.

Задача решается в несколько этапов:

1) осуществляется переход от гелиоцентрической эклиптической прямоугольной системы координат к гелиоцентрической экваториальной прямоугольной системе;

2) от гелиоцентрической экваториальной прямоугольной системы переходим к геоцентрической экваториальной прямоугольной системе;

3) геоцентрические экваториальные прямоугольные координаты преобразуем в геоцентрическое расстояние, прямое восхождение и склонение.

Эти преобразования проводятся следующим образом:

1) На рис. 2.13 V обозначает положение аппарата относительно Солнца S. Относительно осей (образующих прямоугольную систему) аппарат имеет координаты так, что справедливо соотношение

SA (А - перигелий) пересекается со сферой в точке , а SV - в точке Q. Тогда имеем

В силу теоремы косинусов, примененной к сферическому треугольнику QTN, в котором угол равен 180° - i, получаем

следовательно,

Аналогично, применяя теорему косинусов к треугольнику QNB и вспоминая, что

получаем

Наконец, применение теоремы косинусов к треугольнику QKN дает

Чтобы перейти к гелиоцентрическим экваториальным прямоугольным координатам, заметим, что новые оси ST, SC и SP обладают следующими свойствами: ось SC лежит в экваториальной плоскости под углом 90° к ST, а ось SP перпендикулярна этой плоскости и направлена так, что три оси образуют правую тройку. Тогда новые оси SC и SP получаются из старых осей SB и SK поворотом последних вокруг на угол . Если гелиоцентрические

экваториальные прямоугольные координаты аппарата обозначить , то

Используя уравнения (2.4), (2.5) и (2.6), получаем

Введем ряд вспомогательных углов так, чтобы они удовлетворяли соотношениям

Тогда уравнения (2.7), (2.8) и (2.9) принимают вид

Этими формулами удобно пользоваться, если нужно вычислять прямоугольные координаты аппарата в нескольких положениях. Вспомогательные величины a, A, D, В, с, С являются функциями только элементов ; поэтому их можно вычислить один раз для всех положений. Переменные же и f должны вычисляться для каждого положения (способ их вычисления будет описан позднее - см. гл. 4). Следует, однако, заметить, что являются постоянными только в том случае, когда на аппарат не действуют никакие возмущения. Фактически такая ситуация наблюдается в большинстве межпланетных полетов на пассивных участках траектории.

2) Теперь начало координат переносится из центра Солнца в центр Земли. На рис. 2.14 Е - Земля, S - Солнце, и SP - оси гелиоцентрической экваториальной системы координат,

И - оси геоцентрической экваториальной прямоугольной системы координат, плоскость - плоскость земного экватора. Пусть координаты аппарата V относительно геоцентрических осей, так что

Гелиоцентрические экваториальные координаты Земли. Тогда

Если через (X, Y, Z) обозначить геоцентрические экваториальные координаты Солнца, то

Определение положения точки в пространстве

Итак, положение какой-либо точки в пространстве может быть определено только по отношению к каким-либо другим точкам. Та точка, относительно которой рассматривается положение других точек, называется точкой отсчете . Мы так же применим и другое наименование точки отсчета – точка наблюдения . Обычно с точкой отсчета (или с точкой наблюдения) связывают какую-либо систему координат , которую и называют системой отсчета. В выбранной системе отсчета положение КАЖДОЙ точки определяется ТРЕМЯ координатами.

Правая декартова (или прямоугольная) система координат

Эта система координат представляет собой три взаимно перпендикулярных направленных прямых, называемых так же осями координат , пересекающихся в одной точке (начале координат). Точка начала координат обычно обозначается буквой О.

Оси координат носят названия:

1. Ось абсцисс – обозначается как OX;

2. Ось ординат – обозначается как OY;

3. Ось аппликат – обозначается как OZ


Теперь объясним, почему эта система координат называется правой. Давайте посмотрим на плоскость XOY с положительного направления оси OZ, например из точки А, как это показано на рисунке.

Предположим, что мы начинаем поворачивать ось OX вокруг точки О. Так вот – правая система координат имеет такое свойство, что, если смотреть на плоскость XOY из какой-либо точки положительной полуоси OZ (у нас – это точка А), то, при повороте оси OX на 90 против часовой стрелки, её положительное направление совпадет с положительным направлением оси OY.

Такое решение было принято в научном мире, нам же остается принимать это так, как оно есть.


Итак, после того, как мы определились с системой отсчета (в нашем случае – правой декартовой системой координат), положение любой точки описывается через значения её координат или другими словами – через величины проекций этой точки на оси координат.

Записывается это так: A(x, y, z), где x, y, z – и есть координаты точки А.

Прямоугольную систему координат можно представить себе, как линии пересечения трех взаимно перпендикулярных плоскостей.

Следует заметить, что ориентировать прямоугольную систему координат в пространстве можно как угодно, при этом надо выполнить только одно условие – начало координат должно совпадать с центром отсчета (или точкой наблюдения).


Сферическая система координат

Положение точки в пространстве можно описать и другим способом. Предположим, что мы выбрали область пространства, в котором располагается точка отсчета О (или точка наблюдения), и еще нам известно расстояние от точки отсчета до некоторой точки А. Соединим эти две точки прямой ОА. Эта прямая называется радиус-вектором и обозначается, как r . Все точки, имеющие одно и тоже значение радиус-вектора, лежат на сфере, центр которой находится в точке отсчета (или точке наблюдения), а радиус этой сферы равен, соответственно радиус-вектору.

Таким образом, нам становится очевидным, что знание величины радиус-вектора не дает нам однозначного ответа о положении интересующей нас точки. Нужны еще ДВЕ координаты, ведь для однозначного определения местоположения точки количество координат должно равняться ТРЕМ.

Далее мы поступим следующим образом – построим две взаимно перпендикулярные плоскости, которые, естественно, дадут линию пересечения, и эта линия будет бесконечной, потому как и сами плоскости ничем не ограничены. Зададим на этой линии точку и обозначим ее, ну например, как точка О1. А теперь совместим эту точку О1 с центром сферы – точкой О и посмотрим, что получается?


А получается очень интересная картина:

· Как одна, так и другая плоскости будут центральными плоскостями.

· Пересечение этих плоскостей с поверхностью сферы обозначат большие круги

· Один из этих кругов – произвольно, мы назовем ЭКВАТОРОМ , тогда другой круг будет называться ГЛАВНЫМ МЕРИДИАНОМ.

· Линия пересечения двух плоскостей однозначно определит направление ЛИНИИ ГЛАВНОГО МЕРИДИАНА.


Точки пересечения линии главного меридиана с поверхностью сферы обозначим, как М1 и М2

Через центр сферы точку О в плоскости главного меридиана проведем прямую, перпендикулярную линии главного меридиана. Эта прямая носит название ПОЛЯРНАЯ ОСЬ .

Полярная ось пересечет поверхность сферы в двух точках, которые называются ПОЛЮСАМИ СФЕРЫ. Обозначим эти точки, как Р1 и Р2.

Определение координат точки в пространстве

Теперь рассмотрим процесс определения координат точки в пространстве, а так же дадим наименования этим координатам. Для полноты картины, при определении положения точки, укажем основные направления, от которых производится отсчет координат, а так же положительное направление при отсчете.

1. Задаем положение в пространстве точки отсчета (или точки наблюдения). Обозначим эту точку буквой О.

2. Строим сферу, радиус которой равен длине радиус-вектора точки А. (Радиус-вектор точки А – это расстояние между точками О и А). Центр сферы располагается в точке отсчета О.


3. Задаем положение в пространстве плоскости ЭКВАТОРА, а соответственно плоскости ГЛАВНОГО МЕРИДИАНА. Следует напомнить, что эти плоскости взаимно перпендикулярны и являются центральными.

4. Пересечение этих плоскостей с поверхностью сферы определяет нам положение круга экватора, круга главного меридиана, а так же направление линии главного меридиана и полярной оси.

5. Определяем положение полюсов полярной оси и полюсов линии главного меридиана. (Полюса полярной оси – точки пересечение полярной оси с поверхностью сферы. Полюса линии главного меридиана – это точки пересечения линии главного меридиана с поверхностью сферы).


6. Через точку А и полярную ось строим плоскость, которую назовем плоскостью меридиана точки А. При пересечении этой плоскости с поверхностью сферы получится большой круг, который мы назовем МЕРИДИАНОМ точки А.

7. Меридиан точки А пересечет круг ЭКВАТОРА в некоторой точке, которую мы обозначим, как Е1

8. Положение точки Е1 на экваториальном круге определяется длиной дуги, заключенной между точками М1 и Е1. Отсчет ведется ПРОТИВ часовой стрелки. Дуга экваториального круга, заключенная между точками М1 и Е1 называется ДОЛГОТОЙ точки А. Долгота обозначается буквой .

Подведем промежуточный итог. На данный момент нам известны ДВЕ из ТРЕХ координат, описывающих положение точки А в пространстве – это радиус-вектор (r) и долгота (). Теперь мы будем определять третью координату. Эта координата определяется положением точки А на ее меридиане. Но вот положение начальной точки, от которой происходит отсчет, однозначно не определено: мы можем начинать отсчет как от полюса сферы (точка Р1), так и от точки Е1, то есть от точки пересечения линий меридиана точки А и экватора (или другими словами – от линии экватора).


В первом случае, положение точки А на меридиане называется ПОЛЯРНЫМ РАССТОЯНИЕМ (обозначается как р ) и определяется длиной дуги, заключенной между точкой Р1 (или точкой полюса сферы) и точкой А. Отсчет ведется вдоль линии меридиана от точки Р1 к точке А.

Во втором случае, когда отсчет ведется от линии экватора, положение точки А на линии меридиана называется ШИРОТОЙ (обозначается как  и определяется длиной дуги, заключенной между точкой Е1 и точкой А.

Теперь мы можем окончательно сказать, что положение точки А в сферической системе координат определяется через:

· длину радиуса сферы (r),

· длину дуги долготы (),

· длину дуги полярного расстояния (р)

В этом случае координаты точки А запишутся следующим образом: А(r, , p)

Если пользоваться иной системой отсчета, то положение точки А в сферической системе координат определяется через:

· длину радиуса сферы (r),

· длину дуги долготы (),

· длину дуги широты ()

В этом случае координаты точки А запишутся следующим образом: А(r, , )

Способы измерения дуг

Возникает вопрос – как же нам измерить эти дуги? Самый простой и естественный способ – это провести непосредственное измерение длин дуг гибкой линейкой, и это возможно, если размеры сферы сравнимы с размерами человека. Но как поступить, если это условие не выполнимо?

В этом случае мы прибегнем к измерению ОТНОСИТЕЛЬНОЙ длины дуги. За эталон же мы примем длину окружности, частью которой является интересующая нас дуга. Как это можно сделать?

Полярная система координат определяется заданием некоторой точки O , называемой полюсом, исходящего из этой точки луча OA (обозначается также и как Ox ), называемого полярной осью, и масштаба для изменения длин. Кроме того, при задании полярной системы координат должно быть определено, какие повороты вокруг точки O считаются положительными (на чертежах обычно положительными считаются повороты против часовой стрелки).

Итак, выберем на плоскости (рисунок выше) некоторую точку O (полюс) и некоторый выходящий из неё луч Ox . Кроме того, укажем единицу масштаба. Полярными координатами точки M называются два числа ρ и φ, первое из которых (полярный радиус ρ) равно расстоянию точки M от полюса O , а второе (полярный угол φ, который называют также амплитудой) - угол, на который нужно повернуть против часовой стрелки луч Ox до совмещения с лучом OM .

Точку M с полярными координатами ρ и φ обозначают символом M (ρ, φ) .

Связь полярных координат с декартововыми координатами

Установим связь между полярными координатами точки и её декартовыми координатами . Будем предполагать, что начало декартовой прямоугольной системы координат находится в полюсе, а положительная полуось абсцисс совпадает с полярной осью. Пусть точка M имеет декартовы координаты x и y и полярные координаты ρ и φ.Тогда

x = ρ cos φ)

y = ρ sin φ) .

Полярные координаты ρ и φ точки M определяются по её декартовым координатам следующим образом:

Для того, чтобы найти величину угла φ, нужно, используя знаки x и y , определить квадрант, в котором находится точка M , и, кроме того, воспользоваться тем, что тангенс угла φ равен .

Приведённые выше формулы называются формулами перехода от декартовых координат к полярным.

Задачи о точках в полярной системе координат

Пример 1.

A (3; π /4) ;

B (2; -π /2) ;

C (3; -π /3) .

Найти полярные координаты точек, симметричных этим точкам относительно полярной оси.

Решение. При симметрии длина луча не меняется. Следовательно, первая координата - длина луча - у симметричной относительно полярной оси точки будет как и у данной точки. Как видно из рисунка в начале урока, при построении симметричной относительно полярной оси точки данную точку нужно повернуть вокруг полярной оси на тот же угол φ. Следовательно, в полярной системе координат второй координатой симметричной точки будет угол для исходной точки, взятый с противоположным знаком, то есть -φ. Итак, полярные координаты точки, симметричной данной относительно полярной оси будут отличаться лишь второй координатой, и эта координата будет с противоположным знаком. Полярные координаты искомых симметричных точек будут следующими:

A" (3; -π /4) ;

B" (2; π /2) ;

C" (3; π /3) .

Пример 2. В полярной системе координат на плоскости даны точки

A (1; π /4) ;

B (5; π /2) ;

C (2; -π /3) .

Найти полярные координаты точек, симметричных этим точкам относительно полюса.

Решение. При симметрии длина луча не меняется. Следовательно, первая координата - длина луча - у симметричной относительно полюса точки будет как и у данной точки. Симметричная относительно полюса точка получается вращением исходной точки на 180 градусов против часовой стрелки, то есть на угол π . Следовательно, вторая координата точки, симметричной данной относительно полюса рассчитывается как φ + π (если в результате получится числитель больше знаменателя, то вычтем из полученного числа один полный оборот, то есть 2π ). Получаем следующие координаты точек, симметричных данным относительно полюса:

A" (1; 3π /4) ;

B" (5; -π /2) ;

C" (2; 2π /3) .

Пример 3. Полюс полярной системы координат совпадает с началом декартовых прямоугольных координат, а полярная ось совпадает с положительной полуосью абсцисс. В полярной системе координат даны точки

A (6; π /2) ;

B (5; 0) ;

C (2; π /4) .

Найти декартовы координаты этих точек.

Решение. Используем формулы перехода от полярных координат к декартовым:

x = ρ cos φ)

y = ρ sin φ) .

Получаем следующие декартовы координаты данных точек:

A (0; 6) ;

B (5; 0) ;

C" (√2; √2) .

Пример 4. Полюс полярной системы координат совпадает с началом декартовых прямоугольных координат, а полярная ось совпадает с положительной полуосью абсцисс. В декартовой прямоугольной системе координат даны точки

A (0; 5) ;

B (-3; 0) ;

C (√3; 1) .

Найти полярные координаты этих точек.

Топографическое изучение земной поверхности заключается в определении положения ситуации и рельефа относительно математической поверхности Земли, т.е. в определении пространственных координат характерных точек, необходимых и достаточных для моделирования местности. Модель местности может быть представлена в виде геодезических чертежей, изготовление которых называют картографированием, и аналитически – в виде совокупности координат характерных точек. Для построения моделей местности в геодезии применяют метод проекций и различные системы координат.

Метод горизонтальной проекции заключается в том, что изучаемые точки (A, B, C, D, E ) местности с помощью вертикальных (отвесных) линии проектируются на уровенную поверхностьУ (рис. 5), в результате чего получают горизонтальные проекции этих точек (a, b, c, d, e ). ОтрезкиАa, Bb, Cc, Dd, Ee называются высотами точек, а численные их значения – отметками.

Высота точки является одной из её пространственных координат. Отметка называется абсолютной, если в качестве уровенной поверхности принимается геоид, и относительной или условной, если для этого принимается произвольная уровенная поверхность.

Рис. 5. Проектирование точек местности на уровенную поверхность Земли

Две другие недостающие координаты точки определяются с помощью системы координат, построенной на математической поверхности Земли (рис. 6).

Через любую точку поверхности референц-эллипсоида можно провести две взаимно перпендикулярные плоскости:

    плоскость геодезического меридиана – плоскость, проходящая через ось вращения ЗемлиPP" ;

    плоскость геодезической широты , которая перпендикулярна плоскости геодезического меридиана.

Следы сечения поверхности референц-эллипсоида этими плоскостями называют меридианом (М ) и параллелью .

Меридиан , проходящий через астрономическую обсерваторию в Гринвиче, называетсяначальным илинулевым (М 0 ).

Параллель , плоскость которой проходит через центр ЗемлиO , называетсяэкватором (Э ).

Плоскость , проходящая через центр ЗемлиO перпендикулярно к её оси вращенияPP" , называетсяэкваториальной .

Основой для всех систем координат являются плоскости меридиана и экватора.

Рис. 6. Система географических координат Рис. 7. Система геодезических координат

Системы координат подразделяются на угловые, линейные и линейно – угловые.

Примером угловых координат являются географические координаты (рис.6): широта и долгота. Вдоль соответствующих параллели и меридиана широта и долгота точек постоянны.

В геодезии применяются следующие системы координат:

    геодезические;

    астрономические;

    географические;

    плоские прямоугольные геодезические (зональные);

    полярные;

Геодезические координаты

Геодезические координаты определяют положение точки земной поверхности на референц-эллипсоиде (рис.7).

Геодезическая широта B – угол, образованный нормалью к поверхности эллипсоида в данной точке и плоскостью его экватора. Широта отсчитывается от экватора к северу или югу от 0° до 90° и соответственно называется северной или южной широтой.

Геодезическая долгота L – двугранный угол между плоскостями геодезического меридиана данной точки и начального геодезического Гринвичского меридиана.

Долготы точек, расположенных к востоку от начального меридиана, называются восточными, а к западу – западными.

Астрономические координаты (для геодезии)

Астрономическая широта и долготаопределяют положение точки земной поверхности относительно экваториальной плоскости и плоскости начального астрономического меридиана (рис.8).

Рис. 8. Система астрономических координат Рис. 9. Система географических координат

Астрономическая широта

Астрономическая долгота – двугранный угол между плоскостями астрономического меридиана данной точки и начального астрономического меридиана.

Плоскостью астрономического меридиана является плоскость, проходящая через отвесную линию в данной точке и параллельная оси вращения Земли.

Астрономическая широта и долготаопределяются астрономическими наблюдениями.

Геодезические и астрономические координаты отличаются (имеют расхождение) из-за отклонения отвесной линии от нормали к поверхности эллипсоида. При составлении географических карт этим отклонением пренебрегают.

Географические координаты

Географические координаты – величины, обобщающие две системы координат: геодезическую и астрономическую, используют в тех случаях, когда отклонение отвесных линий от нормали к поверхности не учитывается (рис.9).

Географическая широта – угол, образованный отвесной линией в данной точке и экваториальной плоскостью.

Географическая долгота – двугранный угол между плоскостями меридиана данной точки с плоскостью начального меридиана.

Плоские прямоугольные геодезические координаты (зональные).

При решении инженерно-геодезических задач в основном применяют плоскую прямоугольную геодезическую и полярную системы координат.

Для определения положения точек в плоской прямоугольной геодезической системе координат используют горизонтальную координатную плоскость ХОУ (рис. 10), образованную двумя взаимно перпендикулярными прямыми. Одну из них принимают за ось абсциссX , другую – за ось ординатY , точку пересечения осейО – за начало координат.

Рис. 10. Плоская прямоугольная система координат

И
зучаемые точки проектируют с математической поверхности Земли на координатную плоскостьХОУ . Так как сферическая поверхность не может быть спроектирована на плоскость без искажений (без разрывов и складок), то при построении плоской проекции математической поверхности Земли принимается неизбежность данных искажений, но при этом их величины должным образом ограничивают. Для этого применяется равноугольная картографическая проекция Гаусса – Крюгера (проекция названа по имени немецких ученых, предложивших данную проекцию и разработавших формулы для её применения в геодезии), в которой математическая поверхность Земли проектируется на плоскость по участкам – зонам, на которые вся земная поверхность делится меридианами через 6° или 3°, начиная с начального меридиана (рис. 11).

Рис. 11. Деление математической поверхности Земли на шестиградусные зоны

В пределах каждой зоны строится своя прямоугольная система координат. С этой целью все точки данной зоны проецируются на поверхность цилиндра (рис. 12, а), ось которого находится в плоскости экватора Земли, а его поверхность касается поверхности Земли вдоль среднего меридиана зоны, называемого осевым. При этом соблюдается условие сохранения подобия фигур на земле и в проекции при малых размерах этих фигур.

Рис. 12. Равноугольная картографическая проекция Гаусса – Крюгера (а) и зональная система координат (б):

1 – зона, 2 – координатная сетка, 3 – осевой меридиан, 4 – проекция экватора на поверхность цилиндра, 5 – экватор,

6 – ось абсцисс – проекция осевого меридиана, 7 – ось ординат – проекция экватора

После проектирования точек зоны на цилиндр, он развертывается на плоскость, на которой изображение проекции осевого меридиана и соответствующего участка экватора будет представлена в виде двух взаимно перпендикулярных прямых (рис. 12, б). Точка пересечения их принимается за начало зональной плоской прямоугольной системы координат, изображение северного направления осевого меридиана – за положительную ось абсцисс, а изображение восточного направления экватора – за положительное направление оси ординат.

Для всех точек на территории нашей страны абсциссы имеют положительное значение. Чтобы ординаты точек также были только положительными, в каждой зоне ординату начала координат принимают равной 500 км (рис. 12, б). Таким образом, точки, расположенные к западу от осевого меридиана, имеют ординаты меньше 500 км, а к востоку – больше 500 км. Эти ординаты называют преобразованными.

На границах зон в пределах широт от 30° до 70° относительные ошибки, происходящие от искажения длин линий в этой проекции, колеблются от 1: 1000 до 1: 6000. Когда такие ошибки недопустимы, прибегают к трехградусным зонам.

На картах, составленных в равноугольной картографической проекции Гаусса – Крюгера, искажения длин в различных точках проекции различны, но по разным направлениям, выходящим из одной и той же точки, эти искажения будут одинаковы. Круг весьма малого радиуса, взятый на уровенной поверхности, изобразится в этой проекции тоже кругом. Поэтому говорят, что рассматриваемая проекция конформна, т. е. сохраняет подобие фигур на сфере и в проекции при весьма малых размерах этих фигур. Таким образом, изображения контуров земной поверхности в этой проекции весьма близки к тем, которые получаются.

Четверти прямоугольной системы координат нумеруются. Их счет идет по ходу стрелки от положительного направления оси абсцисс (рис.13).

Рис. 13. Четверти прямоугольной системы координат

Если за начало плоской прямоугольной системы координат принять произвольную точку, то она будет называться относительной или условной.

Полярные координаты

При выполнении съемочных и разбивочных геодезических работ часто применяют полярную систему координат (рис.14). Она состоит из полюса О и полярной осиОР , в качестве которых принимается прямая с известным началом и направлением.

Рис. 14. Полярная система координат

Для определения положения точек в данной системе используют линейно-угловые координаты: угол β , отсчитываемый по часовой стрелке от полярной осиОР до направления на горизонтальную проекцию точкиА" , и полярное расстояниеr от полюса системыО до проекцииА" .

Системы высот

Высота точки является третьей координатой, определяющей её положение в пространстве.

В геодезии для определения отметок точек применяются следующие системы высот (рис.15):

    ортометрическая (абсолютная);

    геодезическая;

    нормальная (обобщенная);

    относительная (условная).

Рис. 15. Системы высот в геодезии

Ортометрическая (абсолютная) высота H о – расстояние, отсчитываемое по направлению отвесной линии от поверхности геоида до данной точки.

Геодезическая высота H г – расстояние, отсчитываемое по направлению нормали от поверхности референц-эллипсоида до данной точки.

В нормальной системе высот отметка точкиH н отсчитывается по направлению отвесной линии от поверхностиквазигеоида , близкой к поверхности геоида.

Квазигеоид («якобы геоид») – фигура, предложенная в 1950-х г.г. советским учёным М.С. Молоденским в качестве строгого решения задачи определения фигуры Земли. Квазигеоид определяется по измеренным значениям потенциалов силы тяжести согласно положениям теории М.С. Молоденского.

В нашей стране все высоты реперов государственной нивелирной сети определены в нормальной системе высот. Это связано с тем, что положение геоида под материками определить сложно. Поэтому с конца 40-х годов в СССР было принято решение не применять ортометрическую систему высот.

В России абсолютные высоты точек определяются в Балтийской системе высот (БСВ) относительнонуля Кронштадтского футштока – горизонтальной черты на медной пластине, прикрепленной к устою моста через обводной канал в г. Кронштадте.

Относительная высота H у – измеряется от любой другой поверхности, а не от основной уровенной поверхности.

Местная система высот – Тихоокеанская, её уровенная поверхность ниже нуля Кронштадтского футштока на 1873 мм.